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ABSTRACT
The Shapley value provides a unique approach to equitably gauge

each player’s contribution within a coalition and has extensive

applications with various utility functions. In data valuation for

machine learning, particularly for classification tasks, using classi-

fication accuracy as the utility function has become a factually de

facto standard. However, accuracy can be an imprecise metric, po-

tentially missing finer details crucial for valuation. Can we realize

a refined utility evaluation by employing a new utility function? In

this paper, we propose the probability-based Shapley (P-Shapley)

value, which leverages predicted probabilities to heighten utility

differentiation. Several convex calibration functions are further in-

corporated for probability calibration. We prove that the P-Shapley

value outperforms in approximation stability and the discrimina-

tion of marginal utility change can be further improved by convex

calibration functions. Extensive experiments on four real-world

datasets demonstrate the effectiveness of our approaches.
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1 INTRODUCTION
The renowned Shapley value [36] offers a unique approach of dis-

tributing gains fairly to contributors based on their contribution

towards a collective utility in a cooperative game. This approach

satisfies all four desirable properties of fairness, including efficiency,

symmetry, zero element, and additivity. The Shapley value is gen-

eral owing to the flexible choices of utility functions [10, 17, 27].

Consequently, it has been extensively employed in various applica-

tions, such as explainable artificial intelligence [15, 27], data/feature

selection [5, 17], cloud computing pricing [38], and data product

pricing in data markets [3, 25, 26, 30]. When the utility function
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Figure 1: A motivating example on the drawback of using
accuracy as the utility function.
is model performance (e.g., classification accuracy), the Shapley

value becomes one of the most prevalent data valuation methods

for machine learning (ML) [29], showing superior capability on

multiple downstream ML tasks, including identifying mislabeled

examples [17], detecting outliers [20], and model debugging over

end-to-end ML pipelines [34].

Given a training set comprised of𝑛 data points for a classification

problem, the ML task (i.e., training a classifier) can be regarded as

a cooperative game. The Shapley value views each data point as a

player and the utility function can be defined as the classification

accuracy of the classifier trained on the collective data. The Shapley

value of a data point 𝒛 is the expectation of the marginal utility

contribution that 𝒛 makes for a coalition of data points S (𝒛 ∉ S),
that is, U(S ∪ {𝒛}) − U(S), where U(S) is the classification

accuracy of the classifier trained on S over the entire validation set.

When computing the Shapley value in classification problems, the

vast majority of the previous work [3, 5, 17, 21, 25, 26, 35, 40, 42]

uses classification accuracy as the utility function.

However, using accuracy as the utility function may not suf-

ficiently capture and differentiate the marginal contributions of

training data points for data valuation. Accuracy is the percent-

age of correctly predicted instances. Thus it overlooks valuable

details for valuation. For example in Figure 1, given a binary clas-

sification problem where the classification threshold is 50% and a

validation setV containing four data points labeled as either 0 or

1. Consider two coalitions of training data points S and S ∪ {𝒛}
(𝒛 ∉ S). We observe that classifier C1 trained on S provides confi-

dence scores (i.e., predicted probabilities) of {60%, 30%, 70%, 60%}
for validation points, while classifier C2 trained on S∪{𝒛} provides
scores of {80%, 30%, 70%, 80%}. Although C2 demonstrates greater

predictive confidence, suggesting non-negligible marginal contribu-

tions of 𝒛, both classifiers have an identical classification accuracy

of 3/4 = 75%, which means the Shapley value based on accuracy

would show 0 marginal contribution of 𝒛. While other metrics such
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as AUROC (Area Under the ROC Curve) [18] that consider the

probability output can be more discriminating than accuracy, the

aggregate nature of such metrics still does not capture the subtle

differences of the probability output.

Can we design a new utility function that better captures the mar-
ginal contributions of the data points towards the probability output
of the model? In this paper, we propose to use the average predicted

probability [8], called raw probability, as the utility function. It is

defined as 𝑃𝑟 (𝑦 = 𝑦) = 1

|V |
∑ |V |
𝑖=1

𝑃𝑟 (𝑦𝑖 = 𝑦𝑖 ), where |V| is the size
of validation set, 𝑦𝑖 is the ground truth label for the 𝑖𝑡ℎ validation

data point, and 𝑃𝑟 (𝑦𝑖 = 𝑦𝑖 ) indicates the predicted probability score
that the model assigns the 𝑖𝑡ℎ validation data point to class label

𝑦𝑖 . We show that the raw probability can be mapped to accuracy

𝐴𝑐𝑐 by a piecewise function 𝑓 (𝑥), where values greater than clas-

sification threshold 𝜃 are mapped to 1 and otherwise mapped to

0, i.e., 𝐴𝑐𝑐 = 1

|V |
∑ |V |
𝑖=1

𝑓 (𝑃𝑟 (𝑦𝑖 = 𝑦𝑖 )). A distinctive property of

raw probability is that even if the accuracy is the same, the raw

probability might considerably differ. Therefore, the raw probability

serves as a powerful metric to discern the utility of models trained

over different coalitions and results in a probability-based Shapley
(P-Shapley) value for data valuation on probabilistic classifiers.

To further improve the efficacy of raw probability, we delve into

the intrinsic property of predicted probability. From the perspective

of information theory, as an event becomes more likely to happen,

the potential for additional information decreases [7]. This implies

that the higher the predicted probability, the harder the improve-

ment. For instance, a shift in predicted probability score from 60%

to 70% differs significantly from the one of 90% to 100%. In most

scenarios, the latter is perceived as more valuable and tougher to

achieve. To capture the non-linearity in the improvement of the

predicted probability score, we combine the utility function with

calibration functions to re-evaluate the improvement in predicted

probability. Specifically, we utilize convex calibration functions to

enlarge the utility change when the predicted probability is high.

Our experimental results on four real-world datasets show that

the proposed P-Shapley value outperforms existing Shapley value-

based data valuation approaches across various downstream ML

tasks. Raw probability enjoys stable superiority for data valuation

compared to prevalent metrics for classification evaluation [18]

including accuracy, 𝐹1 score, and AUROC (aka AUC). Besides, us-

ing calibration functions for contribution re-evaluation can further

improve the performance on the same tasks.

The Shapley value is one of the most prevalent data valuation

approaches, so there is a rich body of studies on the variants of the

Shapley value. The main novelty of the paper is that we propose

a new utility function, raw probability, for the first time for re-

thinking the selection of utility function, which facilitates utilizing

the more nuanced predicted probability, thereby sharpening utility

differentiation. We summarize our contributions as follows.

• We propose the P-Shapley value by introducing a new utility

function, raw probability, which allows for a more refined use of

predicted probability and enhances utility distinction (Section 3).

• We further offer several convex calibration functions for prob-

ability calibration to effectively quantify the marginal utility

contribution of each data point (Section 4).

• Experiments on various evaluation tasks with different machine

learning models are conducted, which verify the effectiveness of

our proposed P-Shapley value and the enhancements introduced

by calibration functions (Section 5).

The rest of the paper is organized as follows. Section 2 reviews

the related work on data valuation and activation functions that

can be used to enlarge the utility change when the predicted prob-

ability is high. We review the concept of Shapley value, develop

the P-Shapley value, and analyze the benefits of raw probability in

Section 3. In Section 4, we introduce calibration functions to fur-

ther improve the utility discrimination and present the theoretical

analysis of the advantages of the calibrated P-Shapley value. We

report the experimental results and findings in Section 5. Finally,

we conclude the paper in Section 6.

2 RELATEDWORK
In this section, we discuss related work on data valuation and

activation functions that can be used to enlarge the utility change

when the predicted probability is high.

Data valuation. The emergence of data markets [3, 23, 25, 26, 30]

and federated learning [22, 24, 43] significantly expand data sharing.

For data sharing towards machine learning tasks [2, 13, 41], data

valuation plays a pivotal role in measuring the contribution of each

participant’s data, aiding in valuing data for data products as well

as improving training efficiency and effectiveness by pinpointing

high-value data points. A common way for data valuation is the

leave-one-out (LOO) method [6], which evaluates data through

alterations in model loss upon the modification of a data point.

However, it lacks fairness guarantees. To address this issue, the

Shapley value has recently been used to quantify the contributions

of data points towards training machine learning models [14]. The

performance of a model trained using a subset of the training data

and tested on a holdout validation set is often used as the util-

ity function. The Shapley value measuring the average marginal

contribution of individual data points [11, 17, 33, 34, 40] has been

extensively studied and used in compensation allocation [14, 26],

outlier detection [20], and data selection [34]. Ghorbani et al. [16]

propose distributional Shapley to measure the value of data points

where the dataset is drawn independently and identically from

the underlying distribution. Moreover, Song et al. [37] introduce

Shapley value to federated learning to evaluate the contribution of

each client. Recent advancements in research have brought about

a diversification in the computation of the Shapley value for data

valuation. Beta Shapley [21] refines the Shapley axioms to reduce

noise, and CS-Shapley [35] offers a nuanced class-wise accuracy

metric, underscoring the data point’s contribution to its class. To

overcome the increasing model bias and unfairness [1, 4, 44], Pom-

bal et al. [31] propose fairness-aware Shapley value with a novel

utility function combining model performance and fairness.

The most related literature to our work is [20], which deals with

the data valuation for the specific task on𝐾-nearest neighbor (𝐾NN)

classifier. In particular, the study mainly focuses on the unweighted

𝐾NN classifier and determines the utility of a 𝐾NN classifier based

on the likelihood of the correct label, which can also be viewed

as the predicted probability. However, they use the likelihood of

correct classifications to efficiently estimate the Shapley value (for

2



Table 1: The summary of frequently used notations.
Notation Definition

𝑛 the size of dataset

U(·) the accuracy-based utility function

U𝑝 ( ·) the probability-based utility function

𝑓 ( ·) the piecewise function for classification

SV the Shapley value

PSV the probability-based Shapley value

𝒛𝑖 the 𝑖𝑡ℎ data point in the training set

𝒛′
𝑘

the 𝑘𝑡ℎ data point in the validation set

𝐾NN) instead of improving the quality of data valuation results.

Furthermore, [20] is specific for 𝐾NN classifiers and does not apply

to general classifiers while we focus on general classification tasks.

We note that this work focuses on data valuation for data manage-

ment in the database community instead of model interpretability

in the ML community commonly focusing on feature importance.

Activation function. As we mentioned in Section 1, the increase

of the predicted probability score is non-linear, i.e., the higher the

predicted probability score, the harder the improvement. The pri-

mary advantage of using activation functions in neural networks

lies in their ability to introduce non-linearity. To capture the non-

linearity in the improvement of the predicted probability score, we

combine the raw probability with convex calibration functions se-

lected from activation functions [12, 28, 32], which can enlarge the

utility change when the predicted probability is high. The simplistic

Square 𝑥2 [12] meets our criteria of being convex within interval

[0, 1] with an output range of [0, 1], but has a pronounced deriv-

ative increase in [0, 1] and swift value growth due to its constant

second derivative of 2. Among renowned activation functions [12]

like ReLU, Leaky ReLU, Parametric ReLU, Sigmoid, Tanh, Mish,

and Swish, only Mish [28] and Swish [32] exhibit convexity within

interval [0, 1] with an output range of [0, 1]. Therefore, we employ

Mish and Swish to enlarge the utility change when the predicted

probability is high. Specifically, Mish is characterized by consis-

tent higher-order derivatives within [0, 1] and Swish requires a

customized parameter with akin derivative saturation traits. The

properties facilitate more refined calibrations and potentially opti-

mize the differentiation of marginal contribution for data valuation.

3 PROBABILITY-BASED SHAPLEY VALUE
In this section, we review the notion of the Shapley value, propose

the P-Shapley value based on raw probability, and analyze the ad-

vantages of the P-Shapley value. For reference, Table 1 summarizes

the frequently used notations.

3.1 Shapley Value
Consider a set of data points D = {𝒛1, . . . , 𝒛𝑛}. A coalition S is a

subset of D that cooperates to complete an ML task, for instance,

training an ML model. A utility function U(S) (S ⊆ D) is the
utility of a coalition S for an ML task, which is typically the clas-

sification accuracy of the model trained on S. The marginal con-
tribution of data point 𝒛𝑖 with respect to a coalition S (𝒛𝑖 ∉ S)
is U(S ∪ {𝒛𝑖 }) − U(S). The traditional Shapley value typically

employs an accuracy-based utility function, denoted asU(·),

U(S) = 1

|V|

|V |∑︁
𝑘=1

𝑓 (𝑃𝑟 (𝑦𝑘 = 𝑦𝑘 )), (1)

where 𝑦𝑘 represents the ground truth label of the 𝑘𝑡ℎ data point

𝒛′
𝑘
in the validation set, 𝑦𝑘 stands for the predicted label of 𝒛′

𝑘
by

the probabilistic classifier trained on S, 𝑃𝑟 (𝑦𝑘 = 𝑦𝑘 ) represents the
predicted probability associated with the ground truth label for 𝒛′

𝑘
,

and 𝑓 (·) : [0, 1] → {0, 1} is defined with classification threshold 𝜃

for binary classification and multi-label multi-class classification as

follows

𝑓 (𝑥 ;𝜃 ) =
{
1, if 𝑥 ≥ 𝜃,
0, if 𝑥 < 𝜃 .

(2)

By default, 𝜃 is set to
1

|𝐶 | , where |𝐶 | denotes the number of classes

in the classification problem.

The Shapley value SV𝑖 measures the expectation of marginal

contribution by data point 𝒛𝑖 in all possible coalitions overD. That

is,

SV𝑖 =
1

𝑛

∑︁
S⊆D\{𝒛𝑖 }

U(S ∪ {𝒛𝑖 }) − U(S)(𝑛−1
|S |

) . (3)

Computing the exact Shapley value has to enumerate the utilities

of all coalitions which is proved to be #P-hard [9].

3.2 P-Shapley Value
The vast majority of prior work [3, 5, 17, 21, 25, 26, 35, 40, 42] uses

classification accuracy as the utility function. However, as men-

tioned in Section 1, using raw probability as the utility function is

expected to capture the impact of one datum better than classifica-

tion accuracy. We propose the first probability-based utility function
that allows us to better measure the performance of probabilistic

classifiers for general classification tasks.

Given a classification problem, for any data point 𝒛𝑖 ∈ D (1 ≤
𝑖 ≤ 𝑛), we need to quantify the contribution of data point 𝒛𝑖 to
the probabilistic classifier for the binary classification task. LetV
be the validation set. For a given data coalition S (S ⊆ D), the
probability-based utility functionU𝑝 (·) is defined as follows.

U𝑝 (S) = 𝑃𝑟 (𝑦 = 𝑦) = 1

|V|

|V |∑︁
𝑖=𝑘

𝑃𝑟 (𝑦𝑘 = 𝑦𝑘 ). (4)

Compared withU(S),U𝑝 (S) removes the piecewise function 𝑓 (·)
to reveal the raw probability of the classifier trained on S.

We accumulate a data point 𝒛𝑖 ’s marginal contribution in all

possible coalitions over D as the P-Shapley value PSV𝑖 . That is,

PSV𝑖 =
1

𝑛

∑︁
S⊆D\{𝒛𝑖 }

(
U𝑝 (S ∪ {𝒛𝑖 }) − U𝑝 (S)

)(𝑛−1
|S |

) . (5)

In terms of computational efficiency, since computing the P-Shapley

value requires enumerating the utilities of all coalitions as com-

puting the Shapley value, it is easy to see that both have the same

computational complexity, i.e., #P-hard. Compared to using accu-

racy in computing the Shapley value, the only difference of using

raw probability is avoiding the step of determining whether the

classification probability of the right class is above the classification

threshold. The time cost of this step is negligible compared to the

cost of model training which is required by all methods.

P-Shapley value algorithm. Similar to the computation of Shap-

ley value, calculating the exact P-Shapley value requires exponential

time complexity. Therefore, we adopt an approximate truncated

3



Monte Carlo algorithm [17] to tackle the computational challenge

of estimating P-Shapley values. The pseudocode is shown in Algo-

rithm 1. Specifically, we randomly sample𝑚 permutations of the

training set (Lines 2-3). For each permutation, we scan the data

points progressively and evaluate the utility of the coalition con-

sisting of the scanned data points (Lines 6-10). We then accumulate

each data point’s marginal contribution (Lines 11-12). To reduce the

computational cost, we adopt a truncated threshold 𝜏 such that the

gap between the utility of the coalition consisting of the scanned

data points and the utility of the entire training set falls below 𝜏

(Lines 7-8). Finally, we return the average marginal contribution

from all𝑚 permutations as an approximation of P-Shapley values

(Lines 13-14).

Algorithm 1: Truncated Monte Carlo for P-Shapley value.

input :Training set D = {𝒛1, . . . , 𝒛𝑛 },
number of total permutations𝑚,

truncated threshold 𝜏 .
output :P-Shapley value of training data points PSV1, . . . , PSV𝑛 .

1 PSV𝑖 ← 0 (1 ≤ 𝑖 ≤ 𝑛) ;
2 for 𝑡 =1 to𝑚 do
3 𝜋𝑡 ← random permutation of the training set D;

4 U𝑝 (∅) = 0;

5 Calculate U𝑝 (𝜋𝑡 ) using Equation 4;

6 for j = 1 to 𝑛 do
// Denote the first j data points in 𝜋𝑡 as 𝜋𝑡 [: 𝑗 ]

7 if U𝑝 (𝜋𝑡 [: 𝑗 ] ) − U𝑝 (𝜋𝑡 ) < 𝜏 then
8 U𝑝 (𝜋𝑡 [: 𝑗 ] ) = U𝑝 (𝜋𝑡 [: 𝑗 − 1] ) ;
9 else
10 Calculate U𝑝 (𝜋𝑡 [: 𝑗 ] ) using Equation 4;

11 for 𝑖 = 1 to 𝑛 do
12 PSV𝑖+ = U𝑝 (𝜋𝑡 [: 𝑗 ] ) − U𝑝 (𝜋𝑡 [: 𝑗 − 1] ) ;

13 for 𝑖 = 1 to 𝑛 do
14 PSV𝑖 /=𝑚;

15 return PSV1, . . . PSV𝑛 ;

3.3 Theoretical Analysis
In this section, we show that the probability-based utility function

is superior in preserving more Shannon entropy, differentiating

clean and noisy data points, and enhancing computational stability.

3.3.1 Shannon Entropy. We use Shannon Entropy as the metric of

the amount of uncertainty or randomness in a set of data. It’s widely

used in information theory to represent the average information

content one can expect to gain from observing a random variable.

Here, we show the definitions of Shannon entropy for discrete

random variables and continuous random variables, respectively.

Definition 1 (Shannon Entropy for discrete Random Vari-

ables). Let 𝑋𝑑 be a discrete random variable with probability mass
function 𝑝𝑑 (𝑥), defined over a set X of all possible outcomes. The
Shannon entropy 𝐻 (𝑋𝑑 ) of 𝑋𝑑 is defined as

𝐻 (𝑋𝑑 ) = −
∑︁
𝑥∈X

𝑝𝑑 (𝑥) log
2
𝑝𝑑 (𝑥),

where the sum is taken over all 𝑥 such that 𝑝𝑑 (𝑥) > 0.

Definition 2 (Shannon Entropy for Continuous Random

Variables). Let𝑋𝑐 be a continuous random variable with probability
density function 𝑝𝑐 (𝑥) : R→ R+∪{0}. The Shannon entropy𝐻 (𝑋𝑐 )
of 𝑋𝑐 is defined as

𝐻 (𝑋𝑐 ) = −
∫ ∞

−∞
𝑝𝑐 (𝑥) log

2
𝑝𝑐 (𝑥)𝑑𝑥,

provided the integral exists.

As mentioned in Section 3.2, the probability-based utility func-

tion, denoted asU𝑝 (·), can be transformed into the accuracy-based

utility function,U(·), utilizing a designated piecewise function 𝑓 (·).
By viewing the probability-based utility and the accuracy-based

utility as a continuous random variable 𝑿 and a discrete random

variable 𝒀 , respectively, we prove that the informational content

embedded in the probability-based utility is greater than or equal

to that in the accuracy-based utility as follows.

Theorem 3.1. Let 𝑿 be a continuous random variable defined on
interval [0, 1] with a probability density function 𝑝𝑐 (𝑥) . Define a
new discrete random variable 𝒀 such that 𝒀 = 1 if 𝑿 > 𝜃 and 𝒀 = 0

if 𝑿 ≤ 𝜃 , where 𝜃 is a given threshold 0 < 𝜃 < 1. Then, the entropy
𝐻 (𝒀 ) of 𝒀 satisfies 𝐻 (𝒀 ) ≤ 𝐻 (𝑿 ).

Proof. For ease of presentation, we move the proofs of the

theorems in the paper to the appendix. □

According to Theorem 3.1, the probability-based utility function

preserves more Shannon entropy than the accuracy-based utility

function, making it more effective for data valuation.

3.3.2 discrimination& Stability. A key role of data valuation meth-

ods is differentiating clean and noisy data points. However, Kwon

and Zou [21] point out that the marginal contribution generated

by the accuracy-based utility function becomes indistinguishable

rapidly as the increase of coalition size. Furthermore, approximating

the Shapley value is time-consuming due to the repeated evaluation

of the utility function. Enhanced computational stability implies

that a required approximation can be achieved with fewer utility

samples and consequently save computational resources. In this

section, we explain why the P-Shapley value can better differentiate

clean and noisy data points’ contribution and why the P-Shapley

value exhibits superior stability by introducing Theorem 3.2 and

Theorem 3.3, respectively.

In this section, we use the setting of the binary classification and

the multi-label multi-class classification since the conclusions can

be applied to the multi-class classification by breaking down the

multi-class classification problem into multiple binary classification

problems. When we focus on the 𝑘𝑡ℎ data point in the validation

set, the probability-based utility function of coalition S is

U𝑝 (S;𝑘) = 𝑃𝑟 (𝑦𝑘 = 𝑦𝑘 ). (6)

Meanwhile, the accuracy-based utility function of coalition S for

the 𝑘𝑡ℎ data point in validation set can be expressed asU(S;𝑘) =
𝑓 (U𝑝 (S;𝑘); 1

|𝐶 | ), where 𝑓 (·) is the piecewise function in Equa-

tion 2 and |𝐶 | is the number of classes in the classification problem.

Note that we can interpret U𝑝 (·) as a function that starts at
1

|𝐶 |
and increases (or sometimes decreases) to 1. We divideU𝑝 (·) into
three terms as follows

U𝑝 (S;𝑘) = 𝛼 (𝑘 ;S)𝑃 (S) +
1

|𝐶 | + 𝜖, 𝜖 ∼ N(0, 𝜎
2), (7)

where 𝜖 is an error term stemming from the model’s intrinsic error

and 𝜎 denotes its standard deviation. Notably, 𝜖 , which follows a

zero-mean Normal distribution, is different and independent across

4
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Figure 2: Illustrations of marginal contributions by cardinality on four real-world datasets [39]. The first row shows accuracy-
based marginal contributions for Shapley values, while the second displays probability-based ones for P-Shapley values.

varied coalitions and validation data points. 𝑃 (S) shows the con-
tribution of subset S, while 𝛼 (𝑘 ;S) shows the effect of the con-
tribution of subset S on the 𝑘𝑡ℎ data point in the validation set.

Specifically, 𝑃 (∅) = 0.

Assumptions. For Equation 7, we make the following assumptions,

which hold in general scenarios.

Assumption 1. Each data point 𝒛𝑘 (1 ≤ 𝑘 ≤ |V|) in the valida-
tion set is predictable, i.e., for all 𝑘 , S, 𝛼 (𝑘 ;S) > 0.

Assumption 1 typically holds when the training and validation

sets are not wholly irrelevant since the training set provides useful

information for classification.

Assumption 2. 𝑃 (S) < 𝑃 (S ∪ {𝑧}) and |𝛼 (𝑘 ;S′) − 𝛼 (𝑘 ;S)| ≪
|𝑃 (S′)−𝑃 (S)| for all 𝑘,S,S′, 𝑧 when |S| is large enough and | |S′ | −
|S|| ≤ 1.

Assumption 2 illustrates that the decline in the prediction results

is attributed to the model’s intrinsic error 𝜖 rather than issues with

the quality of the dataset. And the rest part of the assumption can

be accomplished by choosing a suitable 𝑃 (·).

Assumption 3. Only the predictions for 𝜂 |V| data points (denoted
by the setA) in the validation set satisfy that 𝛼 (𝑘 ;S) < 2𝜎 , and for
the 𝜂′ |V| data points (denoted by the set A′) of A, 𝛼 (𝑘 ;S) ≪ 𝜎 .

Assumption 3 shows that only a subset of data points in the

validation set denoted as A, frequently exhibit prediction errors.

These points in A, influenced by the model’s intrinsic errors, still

have some likelihood of prediction errors even when |S| is large.
A subset of A, denoted as A′, is more profoundly affected by the

model’s intrinsic errors, maintaining a significant probability of

prediction errors even with a large coalition size. For the other

data points, their impact on the marginal contribution of the utility

function in accuracy can be disregarded when |S| is large enough.
We note that a scenario when two identical raw probabilities result

in significantly different accuracy values is possible but is negligible

compared to the probability of obtaining the same accuracy.

Higher discrimination. Based on Assumptions 1, 2, and 3, we

present a theorem to illustrate that compared with Shapley values

on accuracy-based utility function, P-Shapley values can effectively

mitigate the diminishing returns of marginal contributions andmain-
tain the discrimination of marginal contribution for clean and noisy

data points.

Theorem 3.2. For all 𝑖 , we have E[PSV𝑖, 𝑗 ] > E[SV𝑖, 𝑗 ] when
cardinality j is large enough, where SV𝑖, 𝑗 ( PSV𝑖, 𝑗 ) measures the
expectation of marginal contribution generated by accuracy-based
(probability-based) utility function by data point 𝒛𝑖 in all possible
coalitions with cardinality 𝑗 over D, called as stratified Shapley (P-
Shapley) value.

An intuitive illustration for Theorem 3.2 is that P-Shapley values

capture all the changes in predicted probabilities caused by the

addition of new data points. When the predicted probability is

significantly greater than 𝜃 , the changes caused by the addition of

new data points are hard for Shapley values to capture. We note

that when the marginal contribution is consistently negative (the

case of noisy data), due to the effect of multiplying by a negative

number on both sides, the inequality in Theorems 3.2 will reverse.

Therefore, the absolute value of P- Shapley values will be greater

than that of Shapley values for a large cardinality, which helps

differentiate clean and noisy data points.

Better stability. Based on Assumption 3, we present a theorem to

illustrate that the variance of P-Shapley values is lower than that of

Shapley values. This suggests that P-Shapley values exhibit superior

performance against the intrinsic errors of the model, rendering it

more stable than Shapley values.

Theorem 3.3. For all 𝑖 , we have Var
(
PSV𝑖, 𝑗

)
< Var

(
SV𝑖, 𝑗

)
when cardinality 𝑗 is large enough.

The reduction in variance is mainly because the accuracy-based

utility of a data point in the validation set is a discrete random vari-

able with values {0, 1}. When it is greatly affected by the model’s

intrinsic errors, the variance will be large. This issue can be effec-

tively circumvented by P-Shapley values, as the probability-based

utility is continuous rather than discrete. Given that P-Shapley val-

ues will be larger than Shapley values as the cardinality increases

(Theorem 3.2), a smaller variance of P-Shapley values (Theorem 3.3)

implies that P-Shapley values possess better stability.
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Case study. Now we attempt to empirically verify the higher dis-

crimination and better stability through a case study. We directly

compare the marginal contribution of mislabeled (noisy) and cor-

rectly labeled (clean) data points generated by accuracy (resp. raw
probability) for Shapley values (resp. P-Shapley values). We set the

training set size 𝑛 = 200 and assume observed data can be misla-

beled. Specifically, we flip the original label for a random 10% of

data points in D. Figure 2 shows the marginal contributions for

clean and noisy samples as a function of the cardinality over four

real-world datasets from OpenML [39]. Each color indicates the

noisy (blue)/clean (yellow) data points’ marginal contribution. We

denote a 95% confidence band based on 50 independent runs. As the

cardinality increases, the difference between the noise (blue) and

clean (yellow) data points in terms of Shapley values becomes less

distinct due to its small absolute value, and it is significantly per-

turbed by the intrinsic errors of the model. In contrast, P-Shapley

values, with their larger absolute value, still exhibit a noticeable

difference and are less affected by the model’s intrinsic errors.

4 CALIBRATED P-SHAPLEY VALUE
In the P-Shapley value, the intrinsic non-linearity property of im-

proving the predicted probability scores is ignored. For example,

the increase in predicted probability score from 90% to 100% is

more challenging than the increase from 60% to 70% in general. In

this section, we incorporate several convex calibration functions

to capture the non-linearity property of improving the predicted

probability scores in Section 4.1 and prove the primary advantages

of these calibration functions in Section 4.2.

4.1 Calibration Functions
As the predicted probability score nears its peak (i.e., 100%), sub-

sequent enhancements become progressively difficult. This non-

linearity can be explained as an effect of marginal diminishing

law in ML [21]. We capture this non-linearity by slowing the rate

of diminishing marginal contribution. Therefore, we underscore

the importance of the marginal improvement made by data points

when the predicted probability is high and propose the calibrated

probability-based utility functionU+𝑝 (S) as follows.

U+𝑝 (S) =
1

|V|
∑︁

𝒛𝑘 ∈V
𝐶𝐹 (𝑃𝑟 (𝑦𝑘 = 𝑦𝑘 )) , (8)

where 𝐶𝐹 (·) is the calibration function. Based on the calibrated

probability-based utility functionU+𝑝 (·), we can measure the ex-

pectation of marginal contribution by data point 𝒛𝑖 in all possible

coalitions over D as 𝒛𝑖 ’s calibrated P-Shapley value, PSV+𝑖 ,

PSV+𝑖 =
1

𝑛

∑︁
S⊆D\{𝒛𝑖 }

U+𝑝 (S ∪ {𝒛𝑖 }) − U+𝑝 (S)(𝑛−1
|S |

) . (9)

As computing the calibrated P-Shapley value is highly similar to

computing the P-Shapley value, Algorithm 1 can be easily applied

to approximate the calibrated P-Shapley value.

Selected Calibration Functions. We select several convex ac-

tivation functions as the calibration functions, including Square,

Mish, and Swish as listed in Table 2. These functions consistently

output values within interval [0, 1] when given inputs in the same

Table 2: Mathematical Expressions for Selected Calibration
Functions (* 𝛽 defaults to 1).

Calibration Function Mathematical Expression

Square 𝑦 = 𝑥2

Mish 𝑦 = 𝑥 tanh [ln(1 + exp(𝑥 ) ]
Swish* 𝑦 = 𝑥 [1 + exp(−𝛽𝑥 ) ]−1
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Figure 3: Graphical Expressions for Calibration Functions.

range (corresponding to the range of predicted probabilities). With

their positive second derivatives, they emphasize the significance

of increases in predicted probability, particularly when it’s already

high, as depicted in Figure 3. Moreover, to maintain the positive and

negative marginal contribution generated by the probability-based

utility function, we require that the calibration function is always

strictly monotonically increasing.

The most straightforward calibration function with a positive

second derivative is 𝑥2, which meets all our expected requirements

for the calibration function, and its derivative exhibits a noticeable

increase over interval [0, 1]. However, it may cause an overly rapid

value growth when the predictive confidence score is high due to its

constant second derivative of 2. The Mish function is convex over

interval [0, 1]. Compared with the square function, its derivative

exhibits a more gradual variation, and its 𝑛𝑡ℎ order derivatives

do not degenerate to zero. Moreover, we can consider a convex

activation function with parameters, Swish, allowing us to adjust

its performance. Also, the derivatives of Swish saturate beyond

a threshold, similar to Mish. The non-linear saturating form of

these calibration functions’ derivatives allows for a smoother value

increment proportional to the predicted probability scores, yielding

more accurate calibration results for the utility function. Therefore,

we are also interested in their performance.

4.2 Theoretical Analysis
In this section, we first present several lemmas to show that convex

functions can slow down the diminishing returns of marginal con-

tributions. Subsequently, we show why P-Shapley values calibrated

by convex calibration functions can more effectively outperform in

distinguishing the contributions of clean and noisy data points in

terms of peak normalization and share in total utility, respectively.

Slowing diminishing rate.We introduce Lemma 4.1, positing that

when a convex function encompasses a monotonically increasing

function𝑈 (·) with a decreasing derivative (i.e., a concave function),

the diminishing rate of its derivative is lower than that of𝑈 (·). This
6



makes the convex function effective as a calibration function to

slow down the diminishing rate of marginal contribution.

Lemma 4.1. If𝑈 (·) is a strictly monotonically increasing derivable
function and𝐶𝐹 (·) is a convex calibration function, then for∀𝑥1 < 𝑥2,
we have (𝐶𝐹◦𝑈 )

′ (𝑥2 )
(𝐶𝐹◦𝑈 ) ′ (𝑥1 ) >

𝑈 ′ (𝑥2 )
𝑈 ′ (𝑥1 ) .

Based on Lemma 4.1, we can obtain Corollary 4.2.

Corollary 4.2. If𝑈 (·) is a strictlymonotonically increasing deriv-
able function and 𝐶𝐹 (·) is a convex strictly monotonically increasing
function, then for ∀𝑥1, 𝑥2, if 𝑥1 ≤ 𝑥2 − 1, we have

𝐶𝐹 ◦𝑈 (𝑥2 + 1) −𝐶𝐹 ◦𝑈 (𝑥2)
𝐶𝐹 ◦𝑈 (𝑥1 + 1) −𝐶𝐹 ◦𝑈 (𝑥1)

>
𝑈 (𝑥2 + 1) −𝑈 (𝑥2)
𝑈 (𝑥1 + 1) −𝑈 (𝑥1)

, (10)

Corollary 4.2 shows that when applying a convex calibration

function, the diminishing returns of the utility function’s marginal

contribution (as the input increases) become less pronounced than

before, meaning the marginal contributions become easier to cap-

ture when the cardinality is large.

Moreover, we need to consider whether the conclusion still holds

after averaging over different coalitions of the same cardinality to

apply it to the stratified P-Shapley value. We introduce Lemma 4.3

to demonstrate that the calibrated stratified P-Shapley values have

a certain degree of consistency with the marginal contributions

calculated by accumulating the P-Shapley values and then applying

the calibration function.

Lemma 4.3. Given 𝐶𝐹 (·) is a convex strictly monotonically in-
creasing function. Define 𝐹𝑖 ( 𝑗) =

∑𝑗−1
𝑝=1
PSV𝑖,𝑝 , we have

lim inf

𝑗→𝑛,𝑛→∞
𝐶𝐹 (𝐹𝑖 ( 𝑗 + 1)) −𝐶𝐹 (𝐹𝑖 ( 𝑗))

PSV+𝑖, 𝑗
= 𝐶1,

lim sup

𝑗→𝑛,𝑛→∞

𝐶𝐹 (𝐹𝑖 ( 𝑗 + 1)) −𝐶𝐹 (𝐹𝑖 ( 𝑗))
PSV+𝑖, 𝑗

= 𝐶2,

𝐶2

𝐶1
≤ 𝐶𝐹

′ (𝑈𝑚𝑎𝑥 )
𝐶𝐹 ′ (𝑈𝑚𝑖𝑛)

, (11)

where𝑈𝑚𝑎𝑥 = lim

𝑛→∞
sup𝑘 U𝑝 (D;𝑘),𝑈𝑚𝑖𝑛 = lim

𝑛→∞
inf𝑘 U𝑝 (D;𝑘).

Peak normalization. Based on the aforementioned lemmas and

corollaries, we can prove that the diminishing returns of the cal-

ibrated P-Shapley values will be more gradual compared with P-

Shapley values. In other words, the calibrated P-Shapley values can

better differentiate clean and noisy data points as the cardinality

increases. Theorem 4.4 states that after normalizing the marginal

contribution with cardinality 𝑗0 (we typically select the peak), cali-

brated P-Shapley values will be greater than P-Shapley values when

cardinality after cardinality threshold 𝑁 .

Theorem 4.4. Given that 𝐶𝐹 (·) is a convex calibration function,
if for cardinality 𝑗0, PSV+𝑖, 𝑗0 = PSV𝑖, 𝑗0 and 𝐶𝐹 ′ (𝑛PSV𝑖 )

𝐶𝐹 ′ (𝐹𝑖 ( 𝑗0 ) ) >

𝐶𝐹 ′ (𝑈𝑚𝑎𝑥 )
𝐶𝐹 ′ (𝑈𝑚𝑖𝑛 ) , we can find threshold 𝑁, ∀𝑗 > 𝑁, PSV+𝑖, 𝑗 > PSV𝑖, 𝑗 .

Utility normalization. Unlike Theorem 4.4, we consider this issue

from the perspective of the model’s overall utility. Given that the

calibration functions we selected have a value of zero at the origin,

we derive Theorem 4.5 which states that after normalizing the total

utility, calibrated stratified P-Shapley values will be greater than

stratified P-Shapley values after cardinality threshold 𝑗0.

Theorem 4.5. If a convex calibration function satisfies that𝐶𝐹 (0) =
0, we can find threshold 𝑁,∀𝑗 > 𝑁 , we have

PSV+𝑖, 𝑗
𝐶𝐹 (U𝑝 (D))

>
PSV𝑖, 𝑗

U𝑝 (D)
. (12)

In summary, Theorem 4.4 and Theorem 4.5 are complementary

ways of stating the diminishing rate of marginal contribution can

be further slowed down by the introduction of a convex calibration

function, respectively. Theorem 4.4 compares the peak normalized

P-Shapley values before and after the introduction of the convex

calibration function, while Theorem 4.5 considers the share of each

in the total utility. We conclude that the introduction of the convex

calibration function further helps us to distinguish between the

contributions of clean and noisy data points.

Furthermore, if the conditions in Lemma 4.1 change from convex

functions to concave functions, then due to the opposite trend in

the derivatives, the direction of the inequalities in the conclusion

will reverse. Consequently, the direction of the inequalities in The-

orem 4.4 and Theorem 4.5 will also reverse. This implies that the

result will be counterproductive if we choose the concave function

as the calibration function.

5 EXPERIMENTS
In this section, we present the empirical evaluation of the proposed

algorithms on diverse classification datasets and compare their per-

formance with existing accuracy-based data valuation methods. In

Section 5.1, we provide details of the experimental setup including

the datasets and compared methods. In Section 5.2, we propose

detailed metrics for measuring the predictive confidence score in

the data removal experiment as well as the median coefficient of

variation in the stability comparison experiment. We conduct ex-

periments on computational stability, high-value data removal, and

noisy data detection in Sections 5.3, 5.4, and 5.5, respectively. In

Section 5.6, we empirically demonstrate the advantages and poten-

tial applications of the probability-based utility function used by

the P-Shapley value in record-level model interpretability.

5.1 Datasets and Experimental Setup
In this section, we describe the datasets, base models, and experi-

mental setup.

Datasets and Base Models.We employ four real-world datasets

from OpenML [39] that are commonly used to benchmark classifi-

cation methods and implement a logistic regression classifier. We

follow the standard methodology used in previous work [21, 35] to

extract features from image datasets including Fashion-MNIST and

CIFAR-10. Specifically, we utilize the pre-trained ResNet-18 [19]

model available in PyTorch to extract image representations. We

then perform principal component analysis (PCA) on the repre-

sentations and select the top 32 principal components as features.

Throughout the experiments, we use a logistic regression model

(LR) and a support vector machine model (SVM) as the base models.

Compared Methods. We augment the proposed P-Shapley value

with three different calibration functions including Square,Mish [28],

and Swish [32] and named as P-Shapley (Raw), P-Shapley (Square),

P-Shapley (Mish), P-Shapley (Swish) accordingly. We compare them
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with the following baseline algorithms: Leave-One-Out [6], trun-

cated Monte Carlo approximated Shapley (TMC-Shapley) [17], and

Beta Shapley (𝛼 = 1, 𝛽 = 16) [21]. We truncate in the same itera-

tion when estimating P-Shapley value, TMC-Shapley value, and

Beta-Shapley value with the truncated Monte Carlo algorithm as

mentioned in Algorithm 1.

5.2 Evaluation Metrics
In this section, we introduce the metrics for the experiment.

Median Coefficient of Variation (Median CV). To assess the

computational stability of the P-Shapley value, we adopt the me-

dian coefficient of variation (Median CV) to capture the degree of

variability across various data points. Given a set of estimated Shap-

ley values

{
SV1

𝑖
, . . . ,SV𝑡

𝑖

}
(1 ≤ 𝑖 ≤ 𝑛) obtained by computing 𝑡

times using the same algorithm under the same experiment setting,

where SV𝑡
𝑖
denotes the 𝑡 th estimated Shapley value of 𝑧𝑖 computed

by the algorithm, the median coefficient of variation is

𝑀𝑒𝑑𝑖𝑎𝑛 𝐶𝑉 = Med

1≤𝑖≤𝑛


√︂

1

𝑡

∑𝑡
𝑗=1

(
SV𝑡

𝑖 − 1

𝑡

∑𝑡
𝑚=1 SV𝑚

𝑖

)
2��� 1𝑡 ∑𝑡

𝑗=1 SV
𝑗

𝑖

���
 . (13)

Weighted Accuracy Drop (WAD). To quantify the overall ac-

curacy drop and its rate for various data valuation methods, we

adopt the weighted accuracy drop (WAD) [35] as a metric. Given

a training set D in descending order by data value and removing

data points progressively starting with the highest value data point,

WAD is calculated by aggregating the prediction accuracy decrease

in each round, with weight inversely proportional to the number

of rounds.

𝑊𝐴𝐷 =

𝑛∑︁
𝑗=1

(
1

𝑗

𝑗∑︁
𝑖=1

(
𝐴𝐶𝐶D[𝑖−1:] − 𝐴𝐶𝐶D[𝑖 :]

))
, (14)

where D[𝑖:] represents the slice of D starting from the 𝑖𝑡ℎ data

point, indicating that the first 𝑖 − 1 data points have been removed.

𝐴𝐶𝐶D [𝑖:] represents the corresponding prediction accuracy of the

probabilistic classifier trained on the remaining data. For boundary

cases, we define D[0:] as the entire training set.

Weighted Brier Score Drop (WBD). To assess the impact on

predictive confidence scores more accurately, we propose the incor-

poration of predicted class probabilities with weighted performance

drops. Brier score (BS) is a measure of the accuracy of predicted

class probabilities made by a probabilistic classifier. As in Equa-

tion 15, it is calculated as the mean squared difference between the

predicted class probabilities Pr(𝑦𝑘 = 𝑦𝑘 ) and target label 𝑦𝑘 .

𝐵𝑆 =
1

|V |

|V|∑︁
𝑘=1

(Pr(�̂�𝑘 = 𝑦𝑘 ) − 𝑦𝑘 )2 (15)

By combining the Brier score and WAD metrics, we introduce the

probability-level Weighted Brier Score Drop (WBD) measure. This

metric offers a probability-based approach to evaluating model

performance that considers both the effect of data point removal

on model performance and its predictive confidence scores.

𝑊𝐵𝐷 = −
𝑛∑︁
𝑗=1

(
1

𝑗

𝑗∑︁
𝑖=1

(
𝐵𝑆D[𝑖−1:] − 𝐵𝑆D[𝑖 :]

))
. (16)

Weighted Cross Entropy Drop (WCD). Similarly, we introduce

cross-entropy (CE) to calculate the cumulative change in themodel’s

predictive confidence scores and calculate Weighted Cross Entropy

Drop (WCD) accordingly.

𝐶𝐸 = −
|V|∑︁
𝑘=1

(𝑦𝑘 log Pr(�̂�𝑘 = 𝑦𝑘 ) + (1 − 𝑦𝑘 ) log(1 − Pr(�̂�𝑘 = 𝑦𝑘 ) ) ) , (17)

𝑊𝐶𝐷 = −
𝑛∑︁
𝑗=1

(
1

𝑗

𝑗∑︁
𝑖=1

(
𝐶𝐸D[𝑖−1:] − 𝐶𝐸D[𝑖 :]

))
. (18)

ForWAD,WBD, andWCD, a higher value suggests that removing

high-value data points leads to a steeper decline in model utility,

which shows the enhanced capability of identifying the high-value

data important for model utility.

5.3 Computational Stability Comparison
We first assess the computational stability of the P-Shapley value.

We repeatedly calculate the SV values and use the Median CV as an

indicator to measure the stability of Shapley values for all points.

The Median CV quantifies the ratio of the standard deviation to the

mean in data distribution. A lower Median CV indicates less vari-

ability. As is shown in Table 3, the PSV algorithm has demonstrated

a superior level of stability compared with the traditional utility-

based SV algorithm, as it consistently exhibits lower Median CV

values across multiple datasets. This underscores the heightened sta-

bility of the PSV algorithm. In the comparedmethods, TMC-Shapley

(AUC) and TMC-Shapley (LogLoss) denote the TMC-Shapley value

replacing accuracy with AUC and LogLoss respectively. Moreover,

Square andMish perform better among the four P-Shapley values in

computational stability since they can reduce the model’s intrinsic

errors more effectively with generally higher derivatives.

Table 3: Median CV for different datasets across methods.
Method Covertype Wind FMNIST CIFAR-10

Beta-Shapley 0.624 0.747 0.602 0.896

TMC-Shapley 0.300 0.217 0.262 0.276

TMC-Shapley (AUC) 0.321 0.173 0.246 0.227

TMC-Shapley (LogLoss) 0.197 0.188 0.223 0.271

P-Shapley (Raw) 0.243 0.169 0.209 0.242

P-Shapley (Square) 0.185 0.165 0.166 0.208

P-Shapley (Swish) 0.228 0.168 0.194 0.230

P-Shapley (Mish) 0.167 0.163 0.152 0.201

5.4 High-value Data Removal
We conduct high-value data removal experiments to evaluate the

effectiveness of our proposed data valuation methods. In these

experiments, we iteratively remove data points from the dataset in

descending order of their assessed value. Training data points with

higher valuation should contribute more to the model performance,

so we measure the performance of each data valuation method with

the performance drop after removing high-value data points.

Figure 4 and Figure 5 depict a decrease in prediction accuracy as

the highest value data point is sequentially removed. The proposed

P-Shapley value approach, utilizing all three calibration functions,

exhibits a faster decrease in accuracy as data points are removed.

This indicates that the P-Shapley value captures the importance

of the data more precisely, allowing for more efficient data reduc-

tion. Moreover, the P-Shapley value with Square, Mish, and Swish

calibration functions shows a faster reduction rate compared with

8



Table 4: WAD, WBD, WCD Drop for High-value data removal (LR).
Covertype Wind Fashion-MNIST CIFAR-10

WAD↑ WBD↑ WCD↑ WAD↑ WBD↑ WCD↑ WAD↑ WBD↑ WCD↑ WAD↑ WBD↑ WCD↑
Leave-One-Out 0.194 0.152 1.197 0.157 0.100 0.693 0.271 0.181 0.606 0.109 0.100 0.595

Beta-Shapley 0.210 0.175 1.630 0.225 0.186 4.191 0.251 0.180 0.757 0.110 0.078 0.323

TMC-Shapley 0.318 0.263 1.737 0.373 0.303 3.911 0.373 0.281 1.211 0.136 0.102 0.462

TMC-Shapley (AUC) 0.339 0.300 2.175 0.376 0.324 5.041 0.416 0.328 1.518 0.100 0.071 0.284

TMC-Shapley (LogLoss) 0.041 0.049 0.665 0.173 0.156 1.675 0.068 0.072 0.650 0.106 0.083 0.519

P-Shapley (Raw) 0.381 0.301 2.475 0.398 0.323 4.457 0.397 0.307 1.404 0.140 0.108 0.487

P-Shapley (Square) 0.428 0.342 2.478 0.439 0.371 5.389 0.475 0.377 1.778 0.224 0.176 0.843

P-Shapley (Swish) 0.401 0.318 2.509 0.413 0.341 4.768 0.424 0.335 1.571 0.166 0.129 0.591

P-Shapley (Mish) 0.436 0.349 2.403 0.449 0.381 5.466 0.490 0.390 1.823 0.235 0.185 0.894

Table 5: WAD, WBD, WCD for High-value data removal (SVM).
Covertype Wind Fashion-MNIST CIFAR-10

WAD↑ WBD↑ WCD↑ WAD↑ WBD↑ WCD↑ WAD↑ WBD↑ WCD↑ WAD↑ WBD↑ WCD↑
Leave-One-Out 0.044 0.042 0.320 0.116 0.135 1.359 0.154 0.127 0.581 0.045 0.020 0.119

Beta-Shapley 0.181 0.143 1.799 0.152 0.079 0.552 0.174 0.105 0.343 0.055 0.028 0.118

TMC-Shapley 0.075 0.052 0.886 0.248 0.142 1.114 0.261 0.168 0.325 0.067 0.029 0.108

TMC-Shapley (AUC) 0.189 0.128 1.282 0.205 0.124 1.415 0.187 0.116 0.349 0.072 0.044 0.105

TMC-Shapley (LogLoss) 0.041 0.049 0.665 0.078 0.090 1.126 0.042 0.028 0.331 0.043 0.033 0.101

P-Shapley (Raw) 0.219 0.115 0.879 0.340 0.291 3.409 0.495 0.081 0.360 0.405 0.026 0.103

P-Shapley (Square) 0.309 0.172 3.862 0.342 0.294 2.902 0.494 0.088 0.393 0.383 0.032 0.128
P-Shapley (Swish) 0.240 0.134 1.352 0.342 0.291 3.158 0.497 0.082 0.367 0.404 0.027 0.107

P-Shapley (Mish) 0.303 0.189 5.901 0.344 0.291 2.707 0.484 0.099 0.435 0.387 0.031 0.124

ReLU, highlighting the efficacy of these non-linear calibration func-

tions. The results of the P-Shapley series on SVM are similar. One

possible reason is that compared to LR, the robustness of SVM

weakens the performance difference among activation functions.

Tables 4 and 5 display the reduction rates of all compared meth-

ods using the WAD, WBD, and WCD metrics, as defined in Sec-

tion 5.2. Upward arrows indicate that the larger the value, the

better. P-Shapley values utilizing all three calibration functions con-

sistently outperform the baselines across all four datasets. Notably,

the P-Shapley value with the Swish calibration function achieves

the highest WBD and WCD scores. One possible reason is that the

Swish activation’s soft clipping nature helps produce a utility func-

tion that varies smoothly with the changes in predictive confidence

score, resulting in well-calibrated data valuation.

5.5 Noisy Data Detection
We now investigate the detection ability of P-Shapley. To introduce

label noise, we randomly shuffle the labels of 20% in the training

data. We compute value estimates on the noised training sets using

each valuation method and then simulate manual inspection by

checking data labels from the lowest value to the highest value. The

expectation is that an effective data valuation method can assign

low values to mislabeled instances relative to the correctly labeled

instances. We compute the Area Under the Curve (AUC) of the

precision-recall (PR) curve for quantitative results. The PR-AUC

results for logistic regression and SVM are presented in Table 6. The

larger the value, the better the capability in noisy data detection. We

find that P-Shapley outperforms other SV-based baselines across

various datasets, which verifies the superiority of P-Shapley values

in noisy data detection. Notably, the ability of P-Shapley values

with different activation functions to detect labels varies across

datasets. This variation is related to the differences among datasets.

Therefore, considering both experimental results in Section 5.4

and Section 5.5, we should determine different activation functions

for P-Shapley values depending on the specific scenario and Mish

enjoys the best compatibility.
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Figure 4: Results for High-value Data Removal (LR).

5.6 Record-level Model Interpretability
Besides the efficacy in data valuation, the P-Shapley value can be a

tool for record-level model interpretability aimed at measuring the

contribution of different data points (i.e., data records) to the model

performance for a specific data point. Notably, record-level model

interpretability is different from (feature-level) model interpretabil-

ity in the ML community aims to understand the contribution or

importance of each feature to the model output. For probabilistic

classifiers, the final predicted probability of each validation data

point often deviates from the base prediction before training with

data, such as the neutral 0.5 in binary classification. It is therefore

9



Table 6: Area Under the Curve (PR-AUC) for LR and SVM.
Logistic Regression SVM

Covertype Wind Fashion-MNIST CIFAR-10 Covertype Wind Fashion-MNIST CIFAR-10

Leave-One-Out 0.622 0.502 0.498 0.554 0.510 0.475 0.426 0.536

Beta-Shapley 0.630 0.738 0.790 0.940 0.530 0.797 0.666 0.776

TMC-Shapley 0.678 0.758 0.828 0.982 0.547 0.842 0.701 0.961

TMC-Shapley (AUC) 0.635 0.744 0.841 0.978 0.552 0.852 0.663 0.968

TMC-Shapley (LogLoss) 0.621 0.734 0.819 0.975 0.526 0.793 0.682 0.933

P-Shapley (Raw) 0.680 0.800 0.857 0.981 0.547 0.892 0.848 0.970

P-Shapley (Square) 0.700 0.806 0.857 0.985 0.581 0.891 0.854 0.972
P-Shapley (Swish) 0.689 0.803 0.858 0.986 0.557 0.892 0.850 0.971

P-Shapley (Mish) 0.707 0.806 0.856 0.985 0.590 0.891 0.854 0.972

0% 20% 40% 60%
Percentage of data removed

0.50

0.55

0.60

0.65

0.70

Pr
ed

ic
ti

on
 A

cc
ur

ac
y

A) Covertype

0% 20% 40% 60%
Percentage of data removed

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Pr
ed

ic
ti

on
 A

cc
ur

ac
y

B) Wind

0% 20% 40% 60%
Percentage of data removed

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Pr
ed

ic
ti

on
 A

cc
ur

ac
y

C) Fashion-MNIST

0% 20% 40% 60%
Percentage of data removed

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

Pr
ed

ic
ti

on
 A

cc
ur

ac
y

D) CIFAR-10

P-Shapley (Square)
P-Shapley (Mish)
P-Shapley (Swish)

P-Shapley
TMC-Shapley(LogLoss)
TMC-Shapley(AUC)

TMC-Shapley
Leave-One-Out
Beta-Shapley

Figure 5: Results for High-value Data Removal (SVM).

tempting to ask: how does the training data shape the model’s

output, specifically the predicted probability corresponding to the

correct label for each validation data point?

The Shapley value can allocate the change in correctness to the

contribution of different training data. However, the change in cor-

rectness is relatively rough compared to the change in predicted

probability. Naturally, the P-Shapley value can be applied to refine

the measurement. As illustrated in Figure 6, we select truck and

automobile images from CIFAR-10 to form a binary classification

problem, extract features with ResNet-50, and employ logistic re-

gression as the classifier (𝜃 = 0.5). We then organize these images

into five disjoint clusters per class using 𝑘-means clustering [18]

and sample six validation images. Data clusters 0-4 and validation

images 0-2 are trucks. Data clusters 5-9 and validation images 3-5

are automobiles. By regarding each data cluster as a participant

in the cooperative game (i.e., model training) and using the raw

probability (resp. accuracy) as the utility, we have the P-Shapley

value (resp. Shapley value) of each data cluster for each validation

image shown in the grids. The P-Shapley value measures the con-

tribution of each data cluster on the final classification probability,

e.g., for validation image 0, data cluster 0 makes a 44% increase

in the predicted probability of the correct label (i.e., truck). The

final probability can be derived by aggregating the effects of all

data clusters over the base probability, for instance, the first row

in Figure 6 indicates 0.5 + 0.440 − 0.038 − 0.058 + 0.083 + 0.063 −

0.270 − 0.055 + 0.035 + 0.045 + 0.126 = 0.871. In contrast, Shapely

values measure the contribution to the classification correctness.

We find that the prediction of validation image 4 is wrong as

the predicted probability for the correct label is not larger than

𝜃 = 0.5. According to the P-Shapley value, the predicted probability

is most swayed by data cluster 2. When data cluster 2 is eliminated

from the training data and then retraining the model, the prediction

probability is boosted from 0.318 to 0.740 and consequently results

in a correct prediction for validation image 4. It showcases the po-

tential of the P-Shapley value in measuring data contribution finely.

Besides, we conduct similar experiments on a basic deep learning

model, multi-layer perceptron (MLP), and the results shown in

Figure 7 verify the effectiveness of P-Shapley values.
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Figure 6: The contribution of each data cluster for the pre-
dicted probability (resp. prediction correctness) of each vali-
dation image on CIFAR-10, and darker colors indicate larger
P-Shapley values (resp. Shapley values).

5.7 Discussion
In this section, we provide a concise overview of the benefits of

employing the probabilistic utility function and compare it to the

traditional utility based on accuracy. As mentioned in Section 5.3, P-

Shapley values consistently exhibit strong stability when subjected

to repeated computations. Also, P-Shapley’s alignment with the

true value of data is evident in the high-value point removal and

noisy data detection experiments, detailed in Sections 5.4 and 5.5.

The interpretability of these values is demonstrated in Section 5.6.
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Figure 7: The contribution of each data cluster for the deep
learning model’s predicted probability (resp. prediction cor-
rectness) of each validation image on CIFAR-10, and darker
colors indicate larger P-Shapley values (resp. Shapley values).

In our exploration, we further ventured into extended Shapley

Value with AUC-based, 𝐹1-score-based, and log-loss-based utility.

The AUC-based and log-loss-based Shapley values, in comparison

to our P-Shapley, showed less optimal performance as shown in

the high-value point removal and noisy data detection experiments.

On the other hand, the 𝐹1-score-based values displayed a signifi-

cant class bias, favoring one class over the other. We believe this

observed bias might be due to the imbalance in our dataset, causing

the 𝐹1 score to overvalue the majority class, given its heightened

sensitivity. We further conducted experiments on perfectly bal-

anced datasets using Shapley values based on the 𝐹1 score. The

results indicated that the aforementioned class bias was eliminated.

However, the experimental performance still significantly lagged

behind the Shapley values based on accuracy.

As for the selection of activation functions, according to the

experimental results, Square and Mish perform better than Raw

and Swish in most cases since they can reduce the model’s in-

trinsic errors more effectively with generally higher derivatives.

However, when the selected model is robust (e.g., SVM) and the

dataset is easy to learn (e.g., Wind), Swish and Raw would perform

better. Furthermore, all activation functions adopted in our paper

possess convex properties (positive second derivatives). We also

experimented with non-convex activation functions, such as the

commonly used Sigmoid and Tanh. The WAD results from the high-

value point removal experiments are illustrated in Table 7. The

performance of non-convex functions is significantly inferior to

that of convex functions. This empirically validates the correctness

of our theoretical analysis presented in Section 4.2.

6 CONCLUSION
In this paper, we propose the P-Shapley value framework, a simple

yet effective method for data valuation that incorporates a new

probability-based utility function for a refined utility evaluation.We

Table 7:WAD for P-Shapley with non-convex activation func-
tions across datasets.
Method Covertype Wind FMNIST CIFAR-10

P-Shapley (Sigmoid) 0.102 0.165 0.167 0.063

P-Shapley (Tahn) 0.295 0.341 0.357 0.208

further suggest a series of convex calibration functions to capture

the non-linearity property of improving the predicted probability

scores by slowing the rate of diminishing marginal contribution.

We prove that the P-Shapley value enjoys better computational

stability as well as a higher ability to discern clean and noisy data.

Experimental results on four real-world datasets show that the

proposed approaches incorporating the probability-based utility

function and the convex calibration functions outperform baseline

methods in effectiveness.

There are several interesting directions for future research.While

our TMC-based P-Shapley estimation is efficient to a certain de-

gree, developing algorithms that enable the P-Shapley value to be

effectively applied to large datasets remains a pivotal challenge.

Meanwhile, exploring more utility functions for classification eval-

uation and applying the idea of raw probability to feature-level

model interpretability can be further studied.

A PROOFS
A.1 Proof of Theorem 3.1

Proof. Consider two random variables 𝑿 and 𝒀 where 𝒀 = 𝑓 (𝑿 ) . For each
possible value of 𝒀 , we have

𝐻 (𝒀 |𝑿 ) =
∫
𝑥

𝑝𝑐 (𝑥 )𝐻 (𝒀 |𝑿 = 𝑥 ) =
∫
𝑥

𝑝𝑐 (𝑥 )𝐻 (𝑓 (𝑿 ) |𝑿 = 𝑥 )

=

∫
𝑥

𝑝𝑐 (𝑥 )
[
−𝑝𝑑 (𝑓 (𝑥 ) ) log

2
𝑝𝑑 (𝑓 (𝑥 ) |𝑿 = 𝑥 )

]
= 0 (19)

where 𝑓 ( ·) is a deterministic function. Using Bayes’s rule, we have

𝐻 (𝑿 ,𝒀 ) = −
∫ ∑︁

𝑦

𝑝𝑐 (𝑥 )𝑝𝑑 (𝑦 |𝑥 ) log
2
[𝑝𝑐 (𝑥 )𝑝𝑑 (𝑦 |𝑥 ) ] 𝑑𝑥

= −
∫ ∑︁

𝑦

𝑝𝑐 (𝑥 )𝑝𝑑 (𝑦 |𝑥 ) [log
2
𝑝𝑐 (𝑥 ) + log

2
𝑝𝑑 (𝑦 |𝑥 ) ] 𝑑𝑥

= −
∫

𝑝𝑐 (𝑥 ) log
2
𝑝𝑐 (𝑥 )

∑︁
𝑦

𝑝𝑑 (𝑦 |𝑥 ) 𝑑𝑥 −
∫ ∑︁

𝑦

𝑝𝑐 (𝑥 )𝑝𝑑 (𝑦 |𝑥 ) log
2
𝑝𝑑 (𝑦 |𝑥 ) 𝑑𝑥

=𝐻 (𝑿 ) +𝐻 (𝒀 |𝑿 ) = 𝐻 (𝑿 ), (20)

where 𝐻 (𝒀 |𝑿 ) = 0 according to Equation 19. Similarly, we have

𝐻 (𝑿 ,𝒀 ) = 𝐻 (𝒀 ) +𝐻 (𝑿 |𝒀 ) . (21)

Then we investigate 𝐻 (𝑿 |𝒀 ) ,

𝐻 (𝑿 |𝒀 ) =
∑︁
𝑦

𝑝𝑑 (𝑦)𝐻 (𝑿 |𝒀 = 𝑦) ≥ 0, (22)

where𝐻 (𝑿 |𝒀 = 𝑦) = −
∫
𝑥
𝑝𝑐 (𝑥 |𝑦) log

2
𝑝𝑐 (𝑥 |𝑦) ≥ 0. According to Equations 20,21,

and 22, we have 𝐻 (𝑿 ) = 𝐻 (𝑿 ,𝒀 ) = 𝐻 (𝒀 ) + 𝐻 (𝑿 |𝒀 ) ≥ 𝐻 (𝒀 ) . This completes

the proof. □

A.2 Proof of Theorem 3.2
A.2.1 Additional notations. we denote S𝑖 = S ∪ {𝒛𝑖 }, 𝑝𝑘 (S) = U𝑝 (S;𝑘 ) and
ℎ𝑖 (S) = 𝑃 (S𝑖 ) − 𝑃 (S) and assmue all the intrinsic errors have same variance 𝜎2

for convenience.

A.2.2 key lemmas.

Lemma A.1. For all S, 𝑧, 𝑖 , we have
lim

𝑗→∞
sup

|S|=𝑗−1

(
U𝑝 (S ∪ {𝑧}) − U𝑝 (S)

)
= 0, lim

𝑛→∞
𝑛PSV𝑖 < ∞.

Consequently, PSV𝑖 → 0 and PSV𝑖,𝑗 → 0 when |S | → ∞.

Proof. This lemma is directly derived from Theorem 1 in [21]. □
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A.2.3 Completing the proof of Theorem 3.2.

Proof. We can compute PSV𝑖,𝑗 directly by Equation 7 :

E[PSV𝑖,𝑗 ]

=
∑︁

S⊆D\{𝑖},|S|=𝑗−1

(
𝑛 − 1

𝑗 − 1

)−1 (
U𝑝 (S𝑖 ) − U𝑝 (S)

)
=

∑︁
S

(
𝑛 − 1

𝑗 − 1

)−1
1

|V |
∑︁
𝑘∈V

(
𝑃 (S𝑖 )𝛼 (𝑘 ; S𝑖 ) − 𝑃 (S)𝛼 (𝑘 ; S)

)
+ 𝜖∗, (23)

We have

E[PSV𝑖,𝑗 ] ≥
(
𝑛 − 1

𝑗 − 1

)−1
1

|V |
∑︁
S

(
𝑃 (S𝑖 ) − 𝑃 (S)

) ( ∑︁
𝑘∈V

𝛼 (𝑘 ; S)
)
. (24)

Since we can estimate the range of U(D) and U𝑝 (D) , using Equation 7, we can

obtain:

E[PSV𝑖,𝑗 ] ≥
1

6

∑︁
S

(
𝑃 (S𝑖 ) − 𝑃 (S)

)
. (25)

We now examine the marginal contribution of accuracy-based utility function for

point 𝑘 upon adding data 𝑖 , and we consider only the points in the set A (mentioned

in Assumption 3):

E[U(S𝑖 ;𝑘 ) − U(S;𝑘 ) ]

= 𝑃𝑟 (𝑝𝑘 (S𝑖 ) ≥
1

|𝐶 | )𝑃𝑟 (𝑝𝑘 (S) <
1

|𝐶 | ) − 𝑃𝑟 (𝑝𝑘 (S𝑖 ) <
1

|𝐶 | )𝑃𝑟 (𝑝𝑘 (S) ≥
1

|𝐶 | ) .

(26)

According to Equation 7, 𝑝𝑘 (S) ∼ N(𝛼 (𝑘 ; S)𝑃 (S) + 1

2
, 𝜎2 ) , then

𝑃𝑟 (𝑝𝑘 (S) ≥
1

|𝐶 | ) =
1

2

+
∫ 𝛼 (𝑘 ;S)𝑃 (S)𝜎−1

0

𝜓 (𝑥 )𝑑𝑥, (27)

where𝜓 ( ·) denotes PDF of the standard normal distribution. Substituting this into

the equation, we obtain:

E[U(S𝑖 ;𝑘 ) − U(S;𝑘 ) ] ≤ 𝜓 (0)
𝜎

(
𝛼 (𝑘 ; S𝑖 )𝑃 (S𝑖 ) − 𝛼 (𝑘 ; S)𝑃 (S)

)
. (28)

According to Assumption 2 and Assumption 3, we can get:

E[U(S𝑖 ;𝑘 ) − U(S;𝑘 ) ] ≤ 2𝜓 (0)ℎ𝑖 (S) (29)

Combing with Equation 25, we can get :

E[SV𝑖,𝑗 ] ≤ 2𝜂1𝜓 (0)
∑︁
S

ℎ𝑖 (S) <
1

6

∑︁
S

ℎ𝑖 (S) ≤ E[PSV𝑖,𝑗 ] . (30)

This completes the proof. □

A.3 Proof of Theorem 3.3
Proof. According to Equation 7, we have:

𝑉𝑎𝑟 (U𝑝 (S𝑖 ;𝑘 ) − U𝑝 (S;𝑘 ) ) = 𝑉𝑎𝑟 (𝜖 ) +𝑉𝑎𝑟 (𝜖 ) = 2𝜎2 . (31)

Now we consider𝑋 = U(S𝑖 ;𝑘 ) − U(S;𝑘 ) with 𝑘 ∈ A′ , which is a key ete random

variable taking values of 1, 0, or −1 with 𝐸𝑋 ≈ 0 and 𝑃𝑟 (0) ≈ 1

2
since Equation 27.

We can get:

𝑉𝑎𝑟 (𝑋 ) = 𝐸𝑋 2 − (𝐸𝑋 )2 ≈ 𝐸𝑋 2 = 𝑃𝑟 (1) + 𝑃𝑟 (−1) ≈ 1

2

. (32)

In this case, we can assume that 2𝜎2 < 1

2
𝜂′2 (𝜎 < 1

2
𝜂′ ) , We have𝑉𝑎𝑟 (U𝑝 (S𝑖 ;𝑘 ) −

U𝑝 (S;𝑘 ) ) < 𝜂′2𝑉𝑎𝑟 (U(S𝑖 ;𝑘 ) − U(S;𝑘 ) ) . Coming with Equation 23, we can

get

𝑉𝑎𝑟 (PSV𝑖,𝑗 )

=
∑︁
S

(
𝑛 − 1

𝑗 − 1

)−2
1

|V |2
∑︁
𝑘∈V

𝑉𝑎𝑟
(
U𝑝 (S𝑖 ;𝑘 ) − U𝑝 (S;𝑘 )

)
<

∑︁
S

(
𝑛 − 1

𝑗 − 1

)−2
𝜂′2

|𝑃 ′ |2
∑︁

𝑘∈A
2

𝑉𝑎𝑟
(
U(S𝑖 ;𝑘 ) − U(S;𝑘 )

)
≤ 𝑉𝑎𝑟 (SV𝑖,𝑗 ) . (33)

This completes the proof. □

A.4 Proof of Lemma 4.1
Proof. Since𝐶𝐹 ( ·) and𝑈 ( ·) are strictly monotonically increasing and𝐶𝐹 ( ·)

is convex, we have
(𝐶𝐹◦𝑈 ) ′ (𝑥

2
)

(𝐶𝐹◦𝑈 ) ′ (𝑥
1
) ,

𝑈 ′ (𝑥
2
)

𝑈 ′ (𝑥
1
) > 0 and𝐶𝐹 ′ (𝑈 (𝑥2 ) ) > 𝐶𝐹 ′ (𝑈 (𝑥1 ) ) > 0.

Since (𝐶𝐹 ◦𝑈 ) ′ (𝑥 ) = 𝐶𝐹 ′ (𝑈 (𝑥 ) )𝑈 ′ (𝑥 ) , we can get:

(𝐶𝐹 ◦𝑈 ) ′ (𝑥2 )
(𝐶𝐹 ◦𝑈 ) ′ (𝑥1 )

=
𝐶𝐹 ′ (𝑈 (𝑥2 ) )𝑈 ′ (𝑥2 )
𝐶𝐹 ′ (𝑈 (𝑥1 ) )𝑈 ′ (𝑥1 )

=
𝐶𝐹 ′ (𝑈 (𝑥2 ) )
𝐶𝐹 ′ (𝑈 (𝑥1 ) )

· 𝑈
′ (𝑥2 )

𝑈 ′ (𝑥1 )
. (34)

Since 𝐶𝐹 ′ (𝑈 (𝑥2 ) ) > 𝐶𝐹 ′ (𝑈 (𝑥1 ) ) > 0, we have
𝐶𝐹 ′ (𝑈 (𝑥

2
) )

𝐶𝐹 ′ (𝑈 (𝑥
1
) ) > 1, which means

(𝐶𝐹◦𝑈 ) ′ (𝑥
2
)

(𝐶𝐹◦𝑈 ) ′ (𝑥
1
) >

𝑈 ′ (𝑥
2
)

𝑈 ′ (𝑥
1
) . □

A.5 Proof of Corollary 4.2
Proof. By Lemma 4.1, we can obtain that

(𝐶𝐹◦𝑈 ) ′ (𝑥 )
𝑈 ′ (𝑥 ) is strictly monotonically

increasing. According to Cauchy’s mean value theorem, ∃𝜉1 ∈ (𝑥1, 𝑥1 + 1), 𝜉2 ∈
(𝑥2, 𝑥2 + 1) s.t.

𝐶𝐹 ◦𝑈 (𝑥1 + 1) − 𝐶𝐹 ◦𝑈 (𝑥1 )
𝑈 (𝑥1 + 1) −𝑈 (𝑥1 )

=
(𝐶𝐹 ◦𝑈 ) ′ (𝜉1 )

𝑈 ′ (𝜉1 )
,

𝐶𝐹 ◦𝑈 (𝑥2 + 1) − 𝐶𝐹 ◦𝑈 (𝑥2 )
𝑈 (𝑥2 + 1) −𝑈 (𝑥2 )

=
(𝐶𝐹 ◦𝑈 ) ′ (𝜉2 )

𝑈 ′ (𝜉2 )
. (35)

Since 𝜉1 < 𝜉2 we have
(𝐶𝐹◦𝑈 ) ′ (𝜉

1
)

𝑈 ′ (𝜉
1
) <

(𝐶𝐹◦𝑈 ) ′ (𝜉
2
)

𝑈 ′ (𝜉
2
) , then we can get

𝐶𝐹 ◦𝑈 (𝑥2 + 1) − 𝐶𝐹 ◦𝑈 (𝑥2 )
𝑈 (𝑥2 + 1) −𝑈 (𝑥2 )

>
𝐶𝐹 ◦𝑈 (𝑥1 + 1) − 𝐶𝐹 ◦𝑈 (𝑥1 )

𝑈 (𝑥1 + 1) −𝑈 (𝑥1 )
, (36)

which is consistent with the conclusion because every term in the inequality is greater

than 0.

□

A.6 Proof of Theorem 4.4
Proof. We interpolate 𝐹𝑖 ( ·) as a continuously derivable function. According to

Corollary 4.2, we have ∀ 𝑗 > 𝑗0 ,

𝐶𝐹 ◦ 𝐹𝑖 ( 𝑗 + 1) − 𝐶𝐹 ◦ 𝐹𝑖 ( 𝑗 )
𝐶𝐹 ◦ 𝐹𝑖 ( 𝑗0 + 1) − 𝐶𝐹 ◦ 𝐹𝑖 ( 𝑗0 )

>
PSV𝑖,𝑗

PSV𝑖,𝑗
0

. (37)

More specifically, the ratio of the left-hand side to the right-hand side of the above

inequality tends to
𝐶𝐹 ′ (𝐹𝑖 ( 𝑗 ) )
𝐶𝐹 ′ (𝐹𝑖 ( 𝑗0 ) )

. Since
𝐶𝐹 ′ (𝐹𝑖 (𝑛) )
𝐶𝐹 ′ (𝐹𝑖 ( 𝑗0 ) )

>
𝐶𝐹 ′ (𝑈𝑚𝑎𝑥 )
𝐶𝐹 ′ (𝑈𝑚𝑖𝑛 )

, combing with

Lemma 4.1, we can get ∃𝑁, ∀ 𝑗 > 𝑁 ,

PSV+𝑖,𝑗
PSV+𝑖,𝑗

0

>
PSV𝑖,𝑗

PSV𝑖,𝑗
0

. (38)

Since PSV+𝑖,𝑗
0

≥ PSV𝑖,𝑗
0
, we have

PSV+𝑖,𝑗 > PSV𝑖,𝑗 . (39)

This completes the proof. □

A.7 Proof of Theorem 4.5
Proof. Since𝐶𝐹 (0) = 0, we have

𝐶𝐹 (𝑦)−𝐶𝐹 (𝑥 )
𝐶𝐹 (𝑥 ) >

𝑦−𝑥
𝑥

. Then, we can obtain

that (
𝐶𝐹 (U𝑝 (S𝑖 ;𝑘 ) ) − 𝐶𝐹 (U𝑝 (S;𝑘 ) )

)
𝐶𝐹 (U𝑝 (S;𝑘 ) )

>

(
U𝑝 (S𝑖 ;𝑘 ) − U𝑝 (S;𝑘 )

)
U𝑝 (S;𝑘 )

. (40)

According to Jensen’s inequality,

PSV+𝑖,𝑗
𝐶𝐹 (U𝑝 (S) )

>
PSV+𝑖,𝑗

𝐶𝐹 (U𝑝 (S) )
=

∑
S,𝑘

(
𝐶𝐹 (U𝑝 (S𝑖 ;𝑘 ) ) − 𝐶𝐹 (U𝑝 (S;𝑘 ) )

)∑
S,𝑘 𝐶𝐹 (U𝑝 (S;𝑘 ) )

>

∑
S,𝑘

(
U𝑝 (S𝑖 ;𝑘 ) − U𝑝 (S;𝑘 )

)∑
S,𝑘 U𝑝 (S;𝑘 )

(∗)

=
PSV𝑖,𝑗

U𝑝 (S)
. (41)

Since lim𝑗→𝑛 U𝑝 (S) = U𝑝 (D) , we can get that ∃𝑁, ∀ 𝑗 > 𝑁 ,

PSV+
𝑖,𝑗

𝐶𝐹 (U𝑝 (D) ) >

PSV𝑖,𝑗

U𝑝 (D) . □

Remark 1. The step (∗) does not hold again in any arbitrary case, but in this paper
we consider it to hold given that U𝑝 (S) is not very different.
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