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The Shapley value has been extensively used in many fields as the unique metric to fairly evaluate player

contributions in cooperative settings. Since the exact computation of Shapley values is #P-hard in the task-

agnostic setting, many studies have been developed to utilize the Monte Carlo method for Shapley value

estimation. The existing methods estimate the Shapley values directly. In this paper, we explore a novel

idea—inferring the Shapley values by estimating the differences between them. Technically, we estimate a

differential matrix consisting of pairwise Shapley value differences to reduce the variance of the estimated

Shapley values. We develop a least-squares optimization solution to derive the Shapley values from the

differential matrix, minimizing the estimator variances. Additionally, we devise a Monte Carlo method for

efficient estimation of the differential matrix and introduce two stratified Monte Carlo methods for further

variance reduction. Our experimental results on real and synthetic data sets demonstrate the effectiveness and

efficiency of the differential-matrix-based sampling approaches.
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1 Introduction
The renowned Shapley value [60] is the unique metric for fair reward allocation towards a collective

utility among contributors in a cooperative game. It is grounded in four fundamental desiderata

of fairness, namely efficiency, symmetry, dummy player, and additivity. Owing to the flexibility

of the utility functions, the Shapley value demonstrates significant universality and adaptability

across various areas in data management, such as data pricing [1, 10, 20, 41, 42, 46, 47], data/feature

selection [19, 24], and explanations in database queries [2, 6, 14, 16, 31, 43].

Despite its widespread applicability in numerous domains, applications of the Shapley value

face considerable computational challenges. Specifically, the Shapley value for a player 𝑧 measures

the weighted average of the player’s marginal contributions U(S ∪ {𝑧}) − U(S) (𝑧 ∉ S) for all
∗
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2
𝑛−1

possible coalitions, where S is a coalition of players,U(·) is a utility function, and 𝑛 is the

number of players. The need to evaluate utilities for an exponential number of coalitions makes

the exact computation of Shapley values #P-hard [15] in the task-agnostic setting. For large-scale

applications, particularly database fact valuation in query answering [2, 6, 14, 16, 31, 43] and data

valuation in machine learning [19, 24], the #P-hardness computational complexity renders the

utilization of exact Shapley values impractical.

To facilitate the applications of the Shapley value to large-scale scenarios, approximation methods

based on sampling have been extensively explored [7, 8, 30, 34, 44, 49–51, 72]. TheMonte Carlo-based

approximation algorithm [50] naturally considers the Shapley value as the weighted expectation

of the marginal contributions of each player and samples the marginal contributions. The idea of

sampling inspires a series of studies [7, 8, 30, 34, 37, 49, 51, 72]. Those existing methods estimate

the Shapley values of different parties independently and separately.

Different from all the existing studies, in this paper we take advantage of the efficiency [60], a

key property of the Shapley values. The property states that the Shapley values of all players sum

to a constant, that is,

∑
𝑧∈N SV(𝑧) = U(N) − U(Ø). This property allows for paired sampling

and estimation, potentially reducing estimation variance. Despite its potential, surprisingly this

idea has not been explored in the literature. The principled idea motivates our study. To illustrate

the benefit of exploiting efficiency, we present the following example.

Example 1.1. Consider three i.i.d. random variables 𝑋,𝑌, 𝑍 ∼ N( 1
3
, 𝜎2) such that E[𝑋 ] + E[𝑌 ] +

E[𝑍 ] = 1. We want to estimate 𝑥 = E[𝑋 ], 𝑦 = E[𝑌 ], and 𝑧 = E[𝑍 ]. Let us examine how the

constraint E[𝑋 ] + E[𝑌 ] + E[𝑍 ] = 1 may help in the estimation.

First, as the baseline method, let us ignore the constraint and tackle the three independent random

variables 𝑥 ∼ 𝑃 (𝑋 ), 𝑦 ∼ 𝑃 (𝑌 ), and 𝑧 ∼ 𝑃 (𝑍 ). Apparently, Var(𝑥) = Var(𝑦) = Var(𝑧) = 𝜎2, and

Var(𝑥) + Var(𝑦) + Var(𝑧) = Var(𝑋 ) + Var(𝑌 ) + Var(𝑍 ) = 3𝜎2.

Alternatively, as the constraint-aware method we consider the constraint and tackle the three

independent random variables 𝑎 ∼ 𝑃 (𝑋 − 𝑌 ), ˆ𝑏 ∼ 𝑃 (𝑌 − 𝑍 ), and 𝑐 ∼ 𝑃 (𝑍 − 𝑋 ). We consider three

random variables 𝑥 ′ = 1

3
+ 𝑎

3
− 𝑐

3
,𝑦′ = 1

3
+ ˆ𝑏

3
− 𝑎

3
, and 𝑧′ = 1

3
+ 𝑐

3
− ˆ𝑏

3
. Due to the constraint 𝑥 +𝑦+𝑧 = 1,

we have E[𝑥 ′] = 𝑥 = E[𝑋 ], E[𝑦′] = 𝑦 = E[𝑌 ], and E[𝑧′] = 𝑧 = E[𝑍 ]. In other words, by estimating

the expectations of 𝑥 ′, 𝑦′, and 𝑧′ we can approach the expectations of 𝑋 , 𝑌 , and 𝑍 .

Note that 𝑋 − 𝑌,𝑌 − 𝑍, 𝑍 − 𝑋 ∼ N(0, 2𝜎2). We have Var(𝑎) = Var( ˆ𝑏) = Var(𝑐) = 2𝜎2. Then, in

this constraint-aware method, Var(𝑥 ′) = 1

9
(Var(𝑎) + Var(𝑐)) = 4

9
𝜎2. Similarly, Var(𝑦′) = Var(𝑧′) =

4

9
𝜎2. The variances of 𝑥 ′, 𝑦′, 𝑧′ in this constraint-aware method are substantially smaller than the

variances of 𝑥,𝑦, 𝑧 in the baseline approach.

Furthermore, we can consider the dependence of 𝑋,𝑌, 𝑍 and 𝑎, ˆ𝑏, 𝑐 . Then, Var(𝑥 ′) + Var(𝑦′) +
Var(𝑧′) = 2

9
(Var(𝑎) + Var( ˆ𝑏) + Var(𝑐) − Cov(𝑎, ˆ𝑏) − Cov(𝑎, 𝑐) − Cov( ˆ𝑏, 𝑐)). Since Var(𝑎 + ˆ𝑏 +

𝑐) = Var(𝑎) + Var( ˆ𝑏) + Var(𝑐) + 2Cov(𝑎, ˆ𝑏) + 2Cov(𝑎, 𝑐) + 2Cov( ˆ𝑏, 𝑐) ≥ 0, we have −Cov(𝑎, ˆ𝑏) −
Cov(𝑎, 𝑐) − Cov( ˆ𝑏, 𝑐) ≤ 1

2
(Var(𝑎) + Var( ˆ𝑏) + Var(𝑐)). Therefore, Var(𝑥 ′) + Var(𝑦′) + Var(𝑧′) ≤

1

3
(Var(𝑎) + Var( ˆ𝑏) + Var(𝑐)). Apply the same approach to Var(𝑎) + Var( ˆ𝑏) + Var(𝑐), we have

Var(𝑎) +Var( ˆ𝑏) +Var(𝑐) ≤ 3(Var(𝑋 ) +Var(𝑌 ) +Var(𝑍 )). Therefore, Var(𝑥 ′) +Var(𝑦′) +Var(𝑧′) ≤
Var(𝑋 ) + Var(𝑌 ) + Var(𝑍 ) = 3𝜎2. □

Specifically, we can derive the Shapley values from their differences given the sum of the Shapley

values, which can achieve lower variances than estimating the Shapley values independently and

directly (see details in Section 4.1). Inspired by this intuition, we introduce differential matrix, an

innovative concept representing all pairwise differences between the Shapley values, leading to

more accurate estimates. We subsequently employ a least-squares optimization approach that fully

leverages the differential matrix to determine the Shapley values (Theorem 4.3).
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To efficiently approximate the differential matrix, we develop a Monte Carlo method by refor-

mulating the pairwise difference between the Shapley values (Theorem 5.1). For further variance

reduction, we develop a stratified Monte Carlo method based on the coalition size for the differential

matrix estimation. Moreover, we calculate the optimal sample allocation to minimize the variances

of the elements in the estimated differential matrix (Theorem 5.8). Due to the challenge of the

unobservable stratum variances, we conduct preliminary sampling to estimate the variance of each

stratum. Based on the stratum variances, we calculate an approximately optimal sample allocation.

The superiority of the proposed method is demonstrated through mathematical formalizations

(Theorems 6.1, 6.3, and 6.4) and empirical results (Section 7).

The Shapley value is of vital importance in various fields, which has spurred a large body of

studies dedicated to computation given the formidable computational complexity. The primary

novelty of this paper lies in investigating the potential of the differential matrix in Shapley value

estimation. This innovation improves the efficiency and effectiveness of Shapley value estimation.

Our main contributions are summarized as follows.

• We develop the difference matrix, an innovative concept representing all pairwise differences

between Shapley values, to estimate the Shapley values more efficiently with the constraint

of the efficiency property.

• We propose a suite of advanced sampling algorithms designed to efficiently estimate the

difference matrix, leveraging both unstratified and stratified sampling techniques to enhance

computational performance.

• Through mathematical analysis, we establish the theoretical superiority of our algorithms.

• Experiments are conducted on cooperative games and data valuation tasks to verify the

efficiency and effectiveness of the proposed algorithms.

The rest of this paper is organized as follows. Section 2 provides a brief review of the existing

research on the Shapley value and its computation and estimation methods. Section 3 revisits the

concept of the Shapley value and various methods for the Shapley value estimation. Section 4

introduces the differential matrix, accompanied by a novel method to compute the Shapley values

based on the differential matrix. Section 5 proposes several efficient algorithms for differential

matrix estimation. Section 6 offers a theoretical analysis of the superiority of using the differential

matrix. Experimental results and associated findings are presented in Section 7. The paper concludes

in Section 8, summarizing our key insights and contributions. To keep the main body of the paper

concise, we move all proofs to the appendix.

2 Related Work
The Shapley value [60], named in honor of Lloyd Shapley, plays a pivotal role in cooperative

game theory and finds diverse applications in data management, including explanations in query

answers [2, 4, 6, 14, 16, 31, 33, 43, 57], database tunning [35, 74], data debugging [32, 38, 59],

data/feature selection [12, 23, 23, 24, 56, 66], data cleaning [19, 25], data pricing [1, 3, 9, 10, 20, 41,

42, 45–47, 71], model interpretation [26, 36, 44, 52, 56], client evaluation in federated learning [11,

17, 18, 48, 61, 62, 64, 65, 75], architecture search for graph neutral network [76], and influence

maximization in the social network [5, 22, 77].

In the context of query answering, Livshits et al. [43] applied Shapley values to quantify the

contribution of tuples to query results, specifically for conjunctive and aggregate queries, and

proposed approximation algorithms to address computational challenges in complex cases. Reshef

et al. [57] further investigated the computational complexity of determining Shapley values for

conjunctive queries involving negation, highlighting additional hurdles in such scenarios. Building

on this, Deutch et al. [16] leveraged the Shapley value as an explanation mechanism in databases by
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assigning importance scores to facts. Moreover, Bienvenu et al. [6] linked Shapley value computation

to fixed-size generalized model counting, offering insights into the complexity landscape for

various types of queries. Complementing these studies, Karmakar et al. [33] explored the efficient

computation of expected Shapley-like values within probabilistic databases, designing algorithms

to streamline this process.

In the context of data valuation, which encompasses data selection, data pricing, and data

cleaning, Ghorbani and Zou [24] pioneered the application of the Shapley value to quantify the

value of data points in terms of their contribution to model performance. For data selection, Xia et al.

[70] argued that probability, rather than accuracy, is a more appropriate utility function for Shapley

value-based data valuation. In the domain of data cleaning, Farchi et al. [19] proposed a method to

identify misclassified data points and rank data slices using Shapley values. For data pricing, Liu

et al. [42] utilized Shapley values to allocate compensation in an end-to-end data marketplace.

Since the computation of Shapley values is proved to be #P-hard [15], various approximation

techniques have been developed [7, 13, 24, 28–30, 34, 37, 44, 49–51, 63, 67, 69, 72, 73]. Mann

and Shapley [50] first applied the Monte Carlo sampling technique on Shapley value estimation.

Subsequent research includes permutation sampling methods that estimate Shapley values as

expectations of marginal contributions [51], enhanced by Quasi-Monte Carlo techniques [49] and

stratified sampling algorithms [28] as improved by Castro et al. [7]. Lundberg and Lee [44] computed

the Shapley value by solving a weighted optimization based on sampled utilities, improved by Covert

and Lee [13] based on paired sampling. As computing Shapley values in general cases is particularly

challenging, Jia et al. [29] devised algorithms with polynomial complexity specifically for 𝐾NN

classifiers. Besides, Ghorbani and Zou [24] omitted marginal contributions below a threshold or

approximated utilities based on gradients in permutation sampling, enhancing efficiency at the

expense of the unbiased guarantee. In addition to computing Shapley values within a fixed dataset,

Zhang et al. [73] explored efficient approximation algorithms for updating Shapley values for

dynamic datasets.

Themost relatedworks are [30, 37, 72]. Zhang et al. [72] introduced the concept of complementary

contribution to replace marginal contributions, opening avenues for different sample forms beyond

traditional marginal contributions. Each sample can be used to estimate the Shapley values of all

players. Li and Yu [37] transformed the Shapley value into a form of utility combinations by adding

a constant to each Shapley value, reusing the utility with an expectation of 𝑛/2 times in Shapley

value estimation. Moreover, Kolpaczki et al. [34] proposed a very similar sampling technique

using utilities by splitting the Shapley value into two terms. Jia et al. [30] devised sampling

algorithms based on group testing, which also reuses utilities by sampling differences between

Shapley values. These methods collectively address the computational efficiency bottleneck in

Shapley value estimation by emphasizing utility reuse or alternative sampling strategies. However,

our work differs fundamentally in its approach. Instead of directly estimating the Shapley values or

relying solely on utility reuse, we focus on leveraging the efficiency axiom and paired sampling to

estimate Shapley values based on the differential matrix. This shift in perspective enables further

improvements in computational efficiency and accuracy, setting our method apart from existing

approaches.

3 Preliminaries
In this section, we revisit the concept of the Shapley value and review three methods for Shapley

value estimation, including the classical method based on marginal contributions [8] and two

state-of-the-art methods without using marginal contributions [37, 72]. Table 1 summarizes the

frequently used notations.
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Table 1. A summary of frequently used notations.
Notation Definition

𝑛 the number of players

𝑚 the number of samples

U(·) utility function

N a set of players

𝑧𝑖 the 𝑖𝑡ℎ player

S a coalition within N
SV𝑖 the Shapley value of 𝑧𝑖

ΔSV𝑖, 𝑗 the difference between SV𝑖 and SV 𝑗�SV𝑖 the estimated Shapley value of 𝑧𝑖�ΔSV𝑖, 𝑗 the estimator of ΔSV𝑖, 𝑗

3.1 The Shapley Value and MC Estimation
Consider a setN = {𝑧1, . . . , 𝑧𝑛} of 𝑛 players. A coalition S ⊆ N is a group of players collaborating

to fulfill a task. N itself as a coalition is called the grand coalition. A utility function U(S)
measures the utility of coalition S for a task. Themarginal contribution of a player 𝑧𝑖 (1 ≤ 𝑖 ≤ 𝑛)
to a coalition S is given byU(S ∪ {𝑧𝑖 }) − U(S).

The Shapley value [60] SV𝑖 of a player 𝑧𝑖 is the weighted expectation of the marginal contri-

butions by 𝑧𝑖 to all possible coalitions over N , that is

SV𝑖 =
1

𝑛

∑︁
S⊆N\{𝑧𝑖 }

U(S ∪ {𝑧𝑖 }) − U(S)(
𝑛−1
|S |

) (1)

=
1

𝑛!

∑︁
𝜋∈Π (N)

(U(𝑃𝜋𝑧𝑖 ∪ {𝑧𝑖 }) − U(𝑃
𝜋
𝑧𝑖
)), (2)

where Π(N) is the set of all permutations on N and 𝑃𝜋𝑧𝑖 is the set of players preceding 𝑧𝑖 in

permutation 𝜋 .

The Shapley value establishes the foundational criteria for fair reward allocation, encompassing

efficiency, symmetry, dummy player, and additivity [58]. Specifically, efficiency requires that the

utility of the grand coalition should be completely distributed among all participants, that is,∑𝑛
𝑖=1 SV𝑖 = U(N) −U(Ø). Symmetry dictates that two players always with equivalent marginal

contributions should receive identical Shapley values. Dummy player indicates that a player

always with zero marginal contributions in all cases should have the Shapley value of 0. Additivity
states that the Shapley value of a player in one game that is the union of two tasks should be the

sum of the Shapley values in those individual games.

Computing the exact Shapley value using Equation 1 directly requires enumerating all possible

subsets of N , which is computationally prohibitive for a large number of players. Moreover, utility

evaluation may be costly in some applications, such as constructing an advanced machine-learning

model and evaluating the model performance.

The Monte Carlo method [8] is widely adopted to estimate the Shapley values using Equation 2.

It randomly samples permutations of all players and computes the marginal contribution of each

player 𝑧𝑖 in the sampled permutations. Subsequently, the Shapley value of player 𝑧𝑖 is estimated as

the average of the marginal contributions for player 𝑧𝑖 in all sampled permutations. The Monte

Carlo method provides an unbiased estimator of the Shapley value and achieves better accuracy

with more samples.
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However, the traditional Monte Carlo methods based on marginal contributions may still be

costly since one marginal contribution U(S ∪ {𝑧𝑖 }) − U(S) can only be used to estimate the

Shapley value of one player 𝑧𝑖 . This limitation is particularly evident in situations where the Shapley

values of multiple players or even all players are computed in a shot, where one has to evaluate the

utilities of many coalitions and utility evaluation is costly.

3.2 Monte Carlo Methods without Marginal Contributions
Recently, in order to improve the utility of the evaluation of utility functions, some Monte Carlo

methods [37, 72] for Shapley value estimation not based on marginal contributions are proposed.

3.2.1 Estimation based on complementary contributions. Zhang et al. [72] make an insightful

observation about the complementary contribution of a coalition S, defined by 𝐶𝐶N (S) =
U(S) − U(N\S). The utilities U(S) and U(N \ S) have total weights

(
𝑛−1
|S |−1

)
and −

(
𝑛−1
𝑛−|S |

)
,

respectively, in computing Shapley value SV𝑖 (𝑧𝑖 ∈ S) using Equation 1. Therefore, the Shapley

value can be estimated using complementary contributions, that is, given a set of players N , the

Shapley value of 𝑧𝑖 is

SV𝑖 =
1

𝑛

∑︁
S⊆N\{𝑧𝑖 }

𝐶𝐶N (S ∪ {𝑧𝑖 })(
𝑛−1
|S |

) .

For any coalition S ⊆ N , since every data player 𝑧𝑖 appears in either S or its complement

coalition N \ S, the estimation of the Shapley value of every player 𝑧𝑖 can use either U(S) or
U(N \S). In other words, for a sampled coalitionS, the calculation of utilitiesU(S) andU(N \S)
can be used in the Shapley value estimation of every data player, and thus the utilization of the

samples and the utility evaluation can be improved substantially.

3.2.2 Estimation based on utilities. Li and Yu [37] make another insightful observation about the

Shapley value computation by adding a dummy player 𝑧0 and rewriting Equation 1 into

SV𝑖 =
1

𝑛

∑︁
S⊆N∪{𝑧0 }\{𝑧𝑖 }

U(S ∪ {𝑧𝑖 })(
𝑛−1
|S |

) − 1

𝑛

∑︁
S⊆N

U(S ∪ {𝑧0})(
𝑛−1
|S |

) . (3)

Since the second term in Equation 3 is a constant, we only need to estimate the first term

1

𝑛

∑
S⊆N∪{𝑧0 }\{𝑧𝑖 }

U(S∪{𝑧𝑖 })
(𝑛−1|S| )

(0 ≤ 𝑖 ≤ 𝑛). For any coalition S ⊆ N ∪ {𝑧0}, the corresponding

utilityU(S) calculated can be used in the estimation of the Shapley value of every player 𝑧𝑖 ∈ S,
and thus the utilization of the sample coalitions and the utility evaluation can also be improved

substantially.

4 Shapley value with Differential Matrix
In this section, we develop a new method of differential matrix to reconstruct original values from

differences. We first demonstrate our mathematical intuition of differential matrix in Section 4.1. We

then introduce the concept of differential matrix and identify some useful properties in Section 4.2.

Finally, we present our new approach to determining Shapley values based on the differential

matrix by solving a least-squares optimization in Section 4.3.

4.1 Intuition
In the existing methods, the Shapley value of each player is approximated separately. However, the

Shapley values of all players have the nice property of efficiency, that is

∑𝑛
𝑖=1 SV𝑖 = U(N). Can

this efficiency property help us estimate Shapley values faster and more accurately?
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Example 4.1 (Intuition). Consider 𝑛 i.i.d random variables 𝑋1, 𝑋2, . . . , 𝑋𝑛 ∼ N( 1𝑛 , 𝜎
2) such that∑𝑛

𝑖=1 E[𝑋𝑖 ] = 1. We want to estimate 𝑥𝑖 = E[𝑋𝑖 ] (𝑖 = 1, 2, . . . , 𝑛). There are also two approaches for

the estimation.

First, let us ignore the constraint and tackle the independent random variables 𝑥𝑖 ∼ 𝑃 (𝑋𝑖 ) (𝑖 =
1, 2, . . . , 𝑛). Apparently, Var(𝑥1) = Var(𝑥2) = · · · = Var(𝑥𝑛) = 𝜎2, and Var(𝑥1) + Var(𝑥2) + · · · +
Var(𝑥𝑛) = 𝑛𝜎2.

Alternatively, we can consider the constraint and tackle the independent random variables

ˆ𝑑𝑖, 𝑗 ∼ 𝑃 (𝑋𝑖 − 𝑋 𝑗 ) (1 ≤ 𝑖 < 𝑗 ≤ 𝑛). We consider the random variables 𝑥 ′𝑖 =
1

𝑛
+ 1

𝑛

∑𝑛
𝑗=1

ˆ𝑑𝑖, 𝑗 . Due to

the constraint

∑𝑛
𝑖=1 𝑥𝑖 = 1, we have E[𝑥 ′𝑖 ] = 𝑥𝑖 = E[𝑋𝑖 ] (𝑖 = 1, 2, . . . , 𝑛).

Note that 𝑋𝑖 −𝑋 𝑗 ∼ N(0, 2𝜎2) (1 ≤ 𝑖 < 𝑗 ≤ 𝑛). We have Var(𝑑𝑖, 𝑗 ) = 2𝜎2. Then, in this alternative

method, Var(𝑥 ′𝑖 ) = 1

𝑛2

∑
𝑗≠𝑖 Var(𝑑𝑖, 𝑗 ) = 2(𝑛−1)

𝑛2
(𝑖 = 1, 2, . . . , 𝑛). The variances of 𝑥 ′𝑖 in this alternative

method are smaller than the variances of 𝑥𝑖 in the first approach.

The above example clearly shows that constraints among the expectations of random variables

may help us obtain more accurate estimations of the expectations of random variables. As the

property of efficiency is such a constraint, the intuition of our approach is to make good use of the

property in the Shapley value estimation.

4.2 Differential Matrix
Motivated by Example 4.1, we introduce the notion of differential matrix.

Definition 4.2 (Differential matrix). Given a set of players N = {𝑧1, . . . , 𝑧𝑛}, the differential
matrix of Shapley values ΔSV is an 𝑛 × 𝑛 matrix comprising all the pairwise differences of

the Shapley values between players, where element ΔSV𝑖, 𝑗 in the 𝑖𝑡ℎ row and the 𝑗𝑡ℎ column is

ΔSV𝑖, 𝑗 = SV𝑖 − SV 𝑗 , the difference between the Shapley values of 𝑧𝑖 and 𝑧 𝑗 . □

A differential matrix has the following useful properties.

Property 1. Given a set of players N = {𝑧1, . . . , 𝑧𝑛}, the differential matrix of Shapley values

ΔSV has the following properties.

• Anti-symmetricity: ∀1 ≤ 𝑖, 𝑗 ≤ 𝑛, ΔSV𝑖, 𝑗 = −ΔSV 𝑗,𝑖 ;

• Zero diagonal: ∀1 ≤ 𝑖 ≤ 𝑛, ΔSV𝑖,𝑖 = 0; and

• Triangularity: ∀1 ≤ 𝑖, 𝑗, 𝑙 ≤ 𝑛, ΔSV𝑖, 𝑗 = ΔSV𝑙, 𝑗 − ΔSV𝑙,𝑖 . □

The differential matrix is a skew-symmetric matrix according to the anti-symmetricity and

zero diagonal and thus can be transformed into an upper-triangular matrix containing 𝑛(𝑛 − 1)/2
elements as follows.

©­­­­­­­­«

0 ΔSV1,2 ΔSV1,3 · · · ΔSV1,𝑛

0 ΔSV2,3 · · · ΔSV2,𝑛

. . . . . .
...

. . . ΔSV𝑛−1,𝑛
0

ª®®®®®®®®¬
4.3 From Differential Matrix to Shapley Values
How can we compute the Shapley values using the differential matrix?
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Using the efficiency axiom of the Shapley value

∑𝑛
𝑖=1 SV𝑖 = U(N) −U(Ø), we can obtain the

Shapley values of all players by solving the following system of linear equations.

𝑛SV1 −
𝑛∑︁
𝑗=1

ΔSV1, 𝑗 = U(N) − U(Ø),

...

𝑛SV𝑛 −
𝑛∑︁
𝑗=1

ΔSV𝑛,𝑗 = U(N) − U(Ø).

(4)

Alternatively, using least-squares optimization, we can derive the closed-form expression of the

Shapley value.

Theorem 4.3. The Shapley values SV𝑖 (1 ≤ 𝑖 ≤ 𝑛) are the solutions to the following least-squares
optimization problem.

min

(SV1,...,SV𝑛 )𝑇 ∈R𝑛

∑︁
1≤𝑖< 𝑗≤𝑛

|SV𝑖 − SV 𝑗 − ΔSV𝑖, 𝑗 |2,

s.t.

𝑛∑︁
𝑖=1

SV𝑖 = U(N) − U(Ø).

The closed-form expression of SV𝑖 is

SV𝑖 =
1

𝑛

𝑛∑︁
𝑗=1

ΔSV𝑖, 𝑗 +
1

𝑛
[U(N) − U(Ø)], (5)

which is also the solution to Equation 4. □

The Shapley value of player 𝑧𝑖 obtained with Theorem 4.3 can be interpreted as the combination

of the average difference compared to the other players and a uniform utility allocation.

5 Differential Matrix Estimation
Based on Theorem 4.3, we can approximate Shapley values from an estimated differential matrix.

Now, the only question remained is how we can estimate the differential matrix effectively.

In this section, we systematically propose a series of techniques for estimating the differential

matrix. We start with a simple Monte Carlo estimation approach using utilities in Section 5.1.

Then, we explore the idea of approximating the differential matrix using stratified sampling and

investigate two methods of sample allocation in Sections 5.2 and 5.3, respectively.

5.1 Differential Matrix Estimation Using Utilities
We can estimate the differential matrix directly by approximating each element in the matrix. We

have the following result.

Theorem 5.1. Given a set of players N and two players 𝑧𝑖 , 𝑧 𝑗 ∈ N , the difference between the

Shapley values of 𝑧𝑖 and 𝑧 𝑗 is

ΔSV𝑖, 𝑗 =
1

𝑛 − 1
∑︁

S⊆N\{𝑧𝑖 ,𝑧 𝑗 }

U(S ∪ {𝑧𝑖 }) − U(S ∪ {𝑧 𝑗 })(
𝑛−2
|S |

) (6)

=
1

𝑛 − 1
∑︁

S⊆N\{𝑧𝑖 ,𝑧 𝑗 }

(
U(S ∪ {𝑧𝑖 })(

𝑛−2
|S |

) −
U(S ∪ {𝑧 𝑗 })(

𝑛−2
|S |

) )
. □ (7)
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Algorithm 1: Differential matrix estimation using utilities

input :a set of players N = {𝑧1, . . . , 𝑧𝑛} and sample size𝑚 > 0

output : the estimated difference
�ΔSV𝑖, 𝑗

1 Û𝑖, 𝑗 ,𝑚𝑖, 𝑗 ← 0 (1 ≤ 𝑖, 𝑗 ≤ 𝑛);
2 for 𝑡 = 1 to𝑚 do
3 Select 𝑘 with probability 𝑝𝑘 ∝ 1

𝑘 (𝑛−𝑘 ) (1 ≤ 𝑘 ≤ 𝑛 − 1);
4 Let 𝜋𝑡 be a random permutation of {1, . . . , 𝑛};
5 S ← {𝑧𝜋𝑡 (1) , . . . , 𝑧𝜋𝑡 (𝑘 ) };
6 𝑢 ←U(S);
7 for 𝑖 = 1 to 𝑘 do
8 for 𝑗 = 𝑘 + 1 to 𝑛 do
9 �U𝜋𝑡 (𝑖 ),𝜋𝑡 ( 𝑗 )+ = 𝑢,𝑚𝜋𝑡 (𝑖 ),𝜋𝑡 ( 𝑗 )+ = 1;

10 for 𝑖 = 1 to 𝑛 do
11 for 𝑗 = 1 to 𝑛 do

12 �ΔSV𝑖, 𝑗 ←
(
Û𝑖,𝑗

𝑚𝑖,𝑗
− Û𝑗,𝑖

𝑚 𝑗,𝑖

)
;

13 return �ΔSV1,2, �ΔSV1,3, . . . , �ΔSV𝑛−1,𝑛 .

If we use Equation 6, for a sample coalitionS, the difference of utilitiesU(S∪{𝑧𝑖 })−U(S∪{𝑧 𝑗 })
can be used by only a pair of players, which is a situation similar to that of using marginal

contributions in the Monte Carlo estimation methods using Equation 2. Using Equation 7, the

utilityU(S) can be used for all the differences ΔSV𝑖, 𝑗 with 𝑧𝑖 ∈ S and 𝑧 𝑗 ∈ N \ S, and thus we

can update |S|(𝑛 − |S|) elements in the differential matrix usingU(S) for one sample coalition S.

Corollary 5.2 (Usage of utilities). Using Algorithm 1, in expectation, each utilityU(S) can
be used to update

𝑛2

(2∑𝑛−1
𝑘=1

1

𝑘
) elements in the differential matrix. □

In summary, the utility-based method is shown in Algorithm 1. To ensure unbiasedness, we set

𝑝𝑘 ∝ 1

𝑘 (𝑛−𝑘 ) . We have the following result about the estimation quality.

Theorem 5.3 (Estimation using utilities). Algorithm 1 provides unbiased estimators if every

element in the differential matrix is updated at least once. □

5.2 Stratified Monte Carlo Methods
Stratified sampling serves as an effective approach to improve the effectiveness of sampling in

estimation, and often improves the efficiency of sampling-based approximation methods. With

appropriate partitioning of the population and proper sample allocation, stratified sampling reduces

the variance compared to unstratified sampling [54]. In this section, we explore stratified sampling

strategies to estimate a differential matrix.

Naturally, we may stratify the coalitions based on the size, that is, we put the coalitions of the

same size into the same stratum. In this way we have 𝑛 − 1 strata in total. We call a coalition with 𝑘

players a 𝑘-coalition. Denote by𝔖𝑘
the set of all 𝑘-coalitions. The utilities in the 𝑘𝑡ℎ stratum is

{U(S)|S ∈ 𝔖𝑘 }. To explore the strategy of stratification, we define the following.
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Definition 5.4 (Stratified utility). Given a set of players N , for two different players 𝑧𝑖 and 𝑧 𝑗 ,

denote by𝔖𝑘
𝑖\𝑗 the set of all 𝑘-coalitions containing 𝑧𝑖 but not 𝑧 𝑗 . The stratified utilityU𝑘

𝑖,𝑗 for

players 𝑧𝑖 and 𝑧 𝑗 with coalition size 𝑘 is the average of the utilitiesU(S) with S ∈ 𝔖𝑘
𝑖\𝑗 , that is,

U𝑘
𝑖,𝑗 =

1

(𝑛−2𝑘−1)
∑
S∈𝔖𝑘

𝑖\𝑗
U(S) . Specifically,U𝑘

𝑖,𝑖 = 0. □

Based on Theorem 5.1 and Definition 5.4, we have the following result on the relationship

between the differential matrix and stratified utility.

Corollary 5.5. Given a set of players N , the difference between the Shapley values of 𝑧𝑖 and 𝑧 𝑗 is

ΔSV𝑖, 𝑗 =
1

𝑛−1
∑𝑛−1

𝑘=1
(U𝑘

𝑖,𝑗 −U𝑘
𝑗,𝑖 ). □

According to Definition 5.4,U𝑘
𝑖,𝑗 is the expectation of utilitiesU(S) withS ∈ 𝔖𝑘

𝑖\𝑗 . Consequently,

estimating the differential matrix can be reformulated as a sampling process estimating stratified

utilities according to Corollary 5.5.

To estimate U𝑘
𝑖,𝑗 by sampling coalitions, given a set of coalition samples with size 𝑚𝑘

𝑖,𝑗 and

the corresponding utilities, {U(S1), . . . ,U(S𝑚𝑘
𝑖,𝑗
)}, where S1, . . . ,S𝑚𝑘

𝑖,𝑗
∈ 𝔖𝑘

𝑖\𝑗 , the mean is

Û𝑘
𝑖,𝑗

= 1

𝑚𝑘
𝑖,𝑗

∑𝑚𝑘
𝑖,𝑗

𝑙=1
U(S𝑙 ), which is an estimator ofU𝑘

𝑖,𝑗 . Then, an estimator of ΔSV𝑖, 𝑗 is
�ΔSV𝑖, 𝑗 =

1

𝑛−1
∑𝑛−1

𝑘=1
Û𝑘

𝑖,𝑗
− 1

𝑛−1
∑𝑛−1

𝑘=1
Û𝑘

𝑗,𝑖
.

Stratified sampling scales up the elements in the differential matrix we must estimate. To ensure

unbiasedness, we design an approach that quickly populates the stratified difference matrix at

the beginning of the algorithm. Specifically, for each stratum𝔖𝑘
with 𝑘 ≤ 𝑛

2
, we select a random

permutation of players {1, 2, . . . , 𝑛}. We can generate ⌈𝑛
𝑘
⌉ disjoint coalitions covering the grand

coalition. We consider the caseN = {1, 2, 3, 4, 5, 6} and 𝑘 = 2 for example. For a random permutation

𝜋 of N , we can derive 3 different coalitions {𝜋 (1), 𝜋 (2)}, {𝜋 (3), 𝜋 (4)} and{𝜋 (5), 𝜋 (6)}. For 𝑘 > 𝑛
2
,

we generate ⌈ 𝑛
𝑛−𝑘 ⌉ complements of the coalitions that need to be sampled. Subsequently, we greedily

fill in all the unsampled elements in the differential matrix (see details in Apendix A). In this way,

we can guarantee that eachU𝑘
𝑖,𝑗 is sampled at least once. The method is given in Algorithm 2. To

ensure variance reduction, we set 𝑝𝑘 the same as Algorithm 1 [54].

Corollary 5.6 (Samples for the unbiased guarantee). Algorithm 2 calls forΘ(𝑛 log𝑛) samples

to make sure every element in the differential matrix is updated at least once. □

Corollary 5.7 (Estimation using stratified utilities). Algorithm 2 provides unbiased esti-

mators. □

5.3 Optimal Sample Allocation
One may be interested in the optimal sample allocation. Inspired by [7, 72], we develop the optimal

sample allocation for Shapley value estimation based on the differential matrix. We have the

following result.

Theorem 5.8 (Variances of the Estimators). Consider the situation where each stratum𝔖𝑘
is

assigned with𝑚𝑘 samples in the Shapley value estimation, we have

E[
∑︁

1≤𝑖< 𝑗≤𝑛
Var(�ΔSV𝑖, 𝑗 )] =

𝑛−1∑︁
𝑘=1

𝑛(𝑛 − 1)
𝑚𝑘𝑘 (𝑛 − 𝑘)

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝜎2
𝑖, 𝑗,𝑘

,

where 𝜎2
𝑖, 𝑗,𝑘

is the variance of the set {U(S)|S ∈ 𝔖𝑘
𝑖\𝑗 }. □
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Algorithm 2: Stratified differential matrix estimation using utilities.

input :players N = {𝑧1, . . . , 𝑧𝑛} and𝑚 ≥ 4𝑛 log𝑛

output : the estimated difference
�ΔSV𝑖, 𝑗

1 Û𝑘
𝑖,𝑗
,𝑚𝑘

𝑖,𝑗 , 𝑐 ← 0 (1 ≤ 𝑖, 𝑗 ≤ 𝑛, 1 ≤ 𝑘 ≤ 𝑛 − 1);
// Ensure unbiasedness.

2 for 𝑘 = 1 to ⌊𝑛
2
⌋ do

3 Let 𝜋𝑘 be a random permutation of {1, . . . , 𝑛};
4 for 𝑙 = 1 to ⌈𝑛

𝑘
⌉ do

5 S ← {𝑧𝜋𝑘 (𝑘 (𝑙−1)+1) , . . . , 𝑧𝜋𝑘 (𝑘𝑙 ) };
// If the index exceeds, perform a modulo n operation.

6 𝑢 ←U(S);
7 𝑛𝑢 ←U(N \ S);
8 for 𝑖 = 𝑘 (𝑙 − 1) + 1 to 𝑘𝑙 do
9 for 𝑗 = 𝑘𝑙 + 1 to 𝑘 (𝑙 − 1) + 𝑛 do
10 �U𝑘

𝜋𝑡 (𝑖 ),𝜋𝑡 ( 𝑗 )+ = 𝑢,𝑚
𝑘
𝜋𝑡 (𝑖 ),𝜋𝑡 ( 𝑗 )+ = 1;

11 �U𝑛−𝑘
𝜋𝑡 ( 𝑗 ),𝜋𝑡 (𝑖 )+ = 𝑛𝑢,𝑚

𝑛−𝑘
𝜋𝑡 ( 𝑗 ),𝜋𝑡 (𝑖 )+ = 1;

12 𝑐+ = 2;

13 GreedyFill(N );

14 for 𝑡 = 1 to𝑚 − 𝑐 do
15 Select 𝑘 with probability 𝑝𝑘 ∝ 1

𝑘 (𝑛−𝑘 ) (1 ≤ 𝑘 ≤ 𝑛 − 1);
16 Let 𝜋𝑡 be a random permutation of {1, . . . , 𝑛};
17 S ← {𝑧𝜋𝑡 (1) , . . . , 𝑧𝜋𝑡 (𝑘 ) };
18 𝑢 ←U(S);
19 for 𝑖 = 1 to 𝑘 do
20 for 𝑗 = 𝑘 + 1 to 𝑛 do
21 �U𝑘

𝜋𝑡 (𝑖 ),𝜋𝑡 ( 𝑗 )+ = 𝑢,𝑚
𝑘
𝜋𝑡 (𝑖 ),𝜋𝑡 ( 𝑗 )+ = 1;

22 for 𝑖 = 1 to 𝑛 do
23 for 𝑗 = 1 to 𝑛 do

24 �ΔSV𝑖, 𝑗 ← 1

𝑛−1
∑𝑛−1

𝑘=1

Û𝑘
𝑖,𝑗

𝑚𝑘
𝑖,𝑗

− 1

𝑛−1
∑𝑛−1

𝑘=1

Û𝑘
𝑗,𝑖

𝑚𝑘
𝑗,𝑖

;

25 return �ΔSV1,2, �ΔSV1,3, . . . , �ΔSV𝑛−1,𝑛 .

To minimize the variances of the estimators, we have the following result according to the

equality condition of the Cauchy-Schwarz inequality.

Theorem 5.9. For the objective function

min

(𝑚1,...,𝑚𝑛−1 )𝑇 ∈N𝑛−1
E[

∑︁
1≤𝑖< 𝑗≤𝑛

Var(�ΔSV𝑖, 𝑗 )],
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Algorithm 3: Stratified differential matrix estimation using utilities based on the optimal

sample allocation.

input :players N = {𝑧1, . . . , 𝑧𝑛} and𝑚,𝑚init ≥ 4𝑛 log𝑛

output : the estimated difference
�ΔSV𝑖, 𝑗

1 Call Algorithm 2 with N ,𝑚init;

2 Record eachU(S) to corresponding𝔖𝑘
𝑖\𝑗 ;

// Bessel’s correction.

3 for 𝑖 = 1 to 𝑛 do
4 for 𝑗 = 1 to 𝑛 do
5 for 𝑘 = 1 to 𝑛 − 1 do
6 𝑢𝑚 ← 1

𝑚𝑖,𝑗,𝑘

∑
𝑢∈𝔖𝑘

𝑖\𝑗
𝑢 ;

7 �̂�2
𝑖, 𝑗,𝑘

= 1

𝑚𝑖,𝑗,𝑘−1
∑

𝑢∈𝔖𝑘
𝑖\𝑗
(𝑢 − 𝑢𝑚)2;

8 for 𝑘 = 1 to 𝑛 − 1 do

9 𝑤𝑘 ←
√︂∑𝑛

𝑖=1

∑𝑛
𝑗=1

�̂�2

𝑖,𝑗,𝑘

𝑘 (𝑛−𝑘 ) ;

10 for 𝑡 = 1 to𝑚 −𝑚init do
11 Select 𝑘 with probability 𝑝𝑘 ∝ 𝑤𝑘 (1 ≤ 𝑘 ≤ 𝑛 − 1);
12 Let 𝜋𝑡 be a random permutation of {1, . . . , 𝑛};
13 S ← {𝑧𝜋𝑡 (1) , . . . , 𝑧𝜋𝑡 (𝑘 ) };
14 𝑢 ←U(S);
15 for 𝑖 = 1 to 𝑘 do
16 for 𝑗 = 𝑘 + 1 to 𝑛 do
17 �U𝑘

𝜋𝑡 (𝑖 ),𝜋𝑡 ( 𝑗 )+ = 𝑢,𝑚
𝑘
𝜋𝑡 (𝑖 ),𝜋𝑡 ( 𝑗 )+ = 1;

18 for 𝑖 = 1 to 𝑛 do
19 for 𝑗 = 1 to 𝑛 do

20 �ΔSV𝑖, 𝑗 ← 1

𝑛−1
∑𝑛−1

𝑘=1

Û𝑘
𝑖,𝑗

𝑚𝑘
𝑖,𝑗

− 1

𝑛−1
∑𝑛−1

𝑘=1

Û𝑘
𝑗,𝑖

𝑚𝑘
𝑗,𝑖

;

21 return �ΔSV1,2, �ΔSV1,3, . . . , �ΔSV𝑛−1,𝑛 .

𝑠 .𝑡 .

𝑛−1∑︁
𝑖=1

𝑚𝑘 =𝑚.

where𝑚𝑘 is the sample size assigned to𝔖𝑘
. We have

𝑚𝑘 ∝

√√√ 𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝜎2
𝑖, 𝑗,𝑘

𝑘 (𝑛 − 𝑘) .

However, it is challenging to compute the variance of the utilities in each stratum. To this end, we

first invoke Algorithm 2 to estimate the variance of the utilities in each stratum based on Bessel’s

correction. Subsequently, we use the variances to compute a proper sample allocation. The method

is given in Algorithm 3.
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Algorithm 4: Partial differential matrix estimation using utilities

input :a set of players N = {𝑧1, . . . , 𝑧𝑛} and sample size𝑚 > 0

output : the estimated difference
�ΔSV1,𝑖

1 Û1,𝑖 , Û𝑖,1,𝑚1,𝑖 ,𝑚𝑖,1 ← 0 (2 ≤ 𝑖 ≤ 𝑛);
2 for 𝑡 = 1 to𝑚 do
3 Select 𝑘 with probability 𝑝𝑘 ∝ 1

𝑘 (𝑛−𝑘 ) (1 ≤ 𝑘 ≤ 𝑛 − 1);
4 Let 𝜋𝑡 be a random permutation of {1, . . . , 𝑛};
5 S ← {𝑧𝜋𝑡 (1) , . . . , 𝑧𝜋𝑡 (𝑘 ) };
6 𝑢 ←U(S);
7 if 1 ∈ S then
8 for 𝑖 = 𝑘 + 1 to 𝑛 do
9 �U1,𝜋𝑡 (𝑖 )+ = 𝑢,𝑚1,𝜋𝑡 (𝑖 )+ = 1;

10 else
11 for 𝑖 = 1 to 𝑘 do
12 �U𝜋𝑡 (𝑖 ),1+ = 𝑢,𝑚𝜋𝑡 (𝑖 ),1+ = 1;

13 for 𝑖 = 2 to 𝑛 do

14 �ΔSV1,𝑖 ←
(
Û1,𝑖

𝑚1,𝑖
− Û𝑖,1

𝑚𝑖,1

)
;

15 return �ΔSV1,2, �ΔSV1,3, . . . , �ΔSV1,𝑛 .

6 Theoretical Analysis
In a fully estimated differential matrix, every element is estimated using some samples. In a partially

estimated differential matrix, some elements may not be estimated by any samples and thus just

take the value of 0 for convenience. In this section, we provide a theoretical analysis to show the

superiority of estimating the Shapley values with a fully estimated differential matrix compared to

using a partially estimated differential matrix (Theorem 6.1) and the state-of-the-art methods based

on complementary contributions and utilities (Theorems 6.3 and 6.4).

The Shapley value calculation only requires a partially estimated differential matrix. For instance,

we only need the first row which represents the differences between the Shapley values of 𝑧1 and

the other players due to the triangularity ΔSV𝑖, 𝑗 = ΔSV1, 𝑗 − ΔSV1,𝑖 . This approach remains

intuitive even with an estimated differential matrix. The corresponding algorithms for partial

differential matrix estimation are presented in Algorithms 4 and 5 (unstratified and stratified).

However, the estimated differential matrix does not exhibit the triangularity because utilities do

not hold the triangularity. In such cases, using a fully estimated differential matrix for Shapley

value estimation is advantageous owing to its more comprehensive information. Moreover, the set

of utilities for estimating the first row is identical to the fully estimated differential matrix. Thus,

the fully estimated differential matrix does not require extra samples compared to the partially

estimated differential matrix.

Let us consider two approaches. Firstly, in Approach P , using the partially estimated differential

matrix (e.g., the first row of the differential matrix) and the efficiency axiom to estimate Shapley

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 75. Publication date: February 2025.



75:14 Junyuan Pang, Jian Pei, Haocheng Xia, Xiang Li, & Jinfei Liu

Algorithm 5: Stratified partial differential matrix estimation using utilities

input :a set of players N = {𝑧1, . . . , 𝑧𝑛} and sample size𝑚 ≥ 4𝑛 log𝑛

output : the estimated difference
�ΔSV1,𝑖

1 Û𝑘
1,𝑖
, Û𝑘

𝑖,1
,𝑚𝑘

1,𝑖 ,𝑚
𝑘
𝑖,1 ← 0 (2 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑘 ≤ 𝑛 − 1);

// Ensure unbiasedness.

2 Û1

1,𝑖
= U({𝑧1}),𝑚1

1,𝑖 = 1 (2 ≤ 𝑖 ≤ 𝑛);
3 �U𝑛−1

𝑖,1
= U(N \ {𝑧1}),𝑚𝑛−1

𝑖,1 = 1, 𝑐 ← 2 (2 ≤ 𝑖 ≤ 𝑛);
4 for 𝑘 = 1 to ⌊𝑛−1

2
⌋ do

5 Let 𝜋𝑘 be a random permutation of {2, . . . , 𝑛};
6 for 𝑙 = 1 to ⌈𝑛−1

𝑘
⌉ do

7 S ← {𝑧𝜋𝑘 (𝑘 (𝑙−1)+1) , . . . , 𝑧𝜋𝑘 (𝑘𝑙 ) };
8 𝑢 ←U(S), 𝑢1 ←U(S ∪ {𝑧1});
9 𝑛𝑢 ←U(N \ S), 𝑛𝑢1 ←U(N \ (S ∪ {𝑧1}));

10 for 𝑖 = 𝑘 (𝑙 − 1) + 1 to 𝑘𝑙 do
11 �U𝑘

𝜋𝑡 (𝑖 ),1+ = 𝑢,𝑚
𝑘
𝜋𝑡 (𝑖 ),1+ = 1;

12 �U𝑛−𝑘
1,𝜋𝑡 (𝑖 )+ = 𝑛𝑢,𝑚

𝑛−𝑘
1,𝜋𝑡 (𝑖 )+ = 1;

13 for 𝑖 = 𝑘𝑙 + 1 to 𝑘 (𝑙 − 1) do
14 �U𝑘+1

1,𝜋𝑡 (𝑖 )+ = 𝑢1,𝑚
𝑘−1
1,𝜋𝑡 (𝑖 )+ = 1;

15 �U𝑛−𝑘−1
𝜋𝑡 (𝑖 ),1+ = 𝑛𝑢1,𝑚

𝑛−𝑘−1
𝜋𝑡 (𝑖 ),1+ = 1;

16 𝑐+ = 4;

17 for 𝑡 = 1 to𝑚 − 𝑐 do
18 Select 𝑘 with probability 𝑝𝑘 ∝ 1

𝑘 (𝑛−𝑘 ) (2 ≤ 𝑘 ≤ 𝑛 − 2);
19 Let 𝜋𝑡 be a random permutation of {1, . . . , 𝑛};
20 S ← {𝑧𝜋𝑡 (1) , . . . , 𝑧𝜋𝑡 (𝑘 ) };
21 𝑢 ←U(S);
22 if 1 ∈ S then
23 for 𝑖 = 𝑘 + 1 to 𝑛 do
24 �U𝑘

1,𝜋𝑡 (𝑖 )+ = 𝑢,𝑚
𝑘
1,𝜋𝑡 (𝑖 )+ = 1;

25 else
26 for 𝑖 = 1 to 𝑘 do
27 �U𝑘

𝜋𝑡 (𝑖 ),1+ = 𝑢,𝑚
𝑘
𝜋𝑡 (𝑖 ),1+ = 1;

28 for 𝑖 = 2 to 𝑛 do

29 �ΔSV1,𝑖 ← 1

𝑛−1
∑𝑛−1

𝑘=1

Û𝑘
1,𝑖

𝑚𝑘
1,𝑖

− 1

𝑛−1
∑𝑛−1

𝑘=1

Û𝑘
𝑖,1

𝑚𝑘
𝑖,1

;

30 return �ΔSV1,2, �ΔSV1,3, . . . , �ΔSV1,𝑛 .

values, the estimated Shapley value
�SVP

𝑖 is�SVP

1
=

1

𝑛

𝑛∑︁
𝑗=1

�ΔSV1, 𝑗 +
1

𝑛
(U(N) − U(Ø)),
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�SVP

𝑖 =
�SVP

1
−�ΔSV

1,𝑖 (𝑖 ≠ 1).
In Approach F , using the fully estimated differential matrix and the efficiency axiom to estimate

Shapley values, the estimated Shapley value
�SVF

𝑖 is�SVF

𝑖 =
1

𝑛

𝑛∑︁
𝑗=1

�ΔSV𝑖, 𝑗 +
1

𝑛
(U(N) − U(Ø)) .

Approach F reconciles with Theorem 4.3 in Section 4.3. We show that Approach F produces an

expected sum of variances on estimated Shapley values equal to or smaller than Approach P when

𝑛 ≥ 5.

Theorem 6.1. 1

When 𝑛 ≥ 5, E[∑𝑛
𝑖=1 Var(

�SVF

𝑖 )] ≤ E[∑𝑛
𝑖=1 Var(

�SVP

𝑖 )] . □

The expected sum of variances of the estimated Shapley values based on the differential matrix

is given by the following.

Theorem 6.2. With 𝑚 samples, the expected sum of variances of the estimated Shapley values

based on the differential matrix using Algorithm 1 is

E[
𝑛∑︁
𝑖=1

Var(�SVF

𝑖 )] =
2(𝑛 − 1)∑𝑛−1

𝑘=1
1

𝑘

𝑛𝑚

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

(
𝜎2𝑖, 𝑗 +

𝑛∑︁
𝑙=1

𝜎2
𝑖, 𝑗,𝑙

)
,

where 𝜎𝑖, 𝑗 is the variance of the random variable over the set {U(S)|𝑧𝑖 ∈ S, 𝑧 𝑗 ∉ S} with 𝑃𝑟 (U =

U(S)) = 1

( 𝑛−2|S|−1)
, and 𝜎𝑖, 𝑗,𝑙 is the covariance of the of the random variables over the set {U(S)|𝑧𝑖 ∈

S, 𝑧 𝑗 ∉ S} and the set {U(S)|𝑧𝑖 ∈ S, 𝑧𝑙 ∉ S}, respectively, with 𝑃𝑟 (U = U(S)) = 1

( 𝑛−2|S|−1)
.

For Algorithm 2,

E[
𝑛∑︁
𝑖=1

Var(�SVF

𝑖 )] =
2(𝑛 − 1)∑𝑛−1

𝑘=1
1

𝑘

𝑛𝑚

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑛−1∑︁
𝑘=1

(
𝜎2
𝑖, 𝑗,𝑘
+

𝑛∑︁
𝑙=1

𝜎2
𝑖, 𝑗,𝑙,𝑘

)
,

where 𝜎𝑖, 𝑗,𝑙,𝑘 is the covariance of the uniformly distributed random variables over the set {U(S)|S ∈
𝔖𝑘

𝑖\𝑗 } and the set {U(S)|S ∈ 𝔖
𝑘
𝑖\𝑙 }, respectively. □

Based on Theorem 6.2, we can conduct a comparative analysis between Approach F and the state-

of-the-art methods based on complementary contributions or utilities, demonstrating Approach F

can guarantee an equal or smaller expected sum of variances.

Theorem 6.3. Given a set of players N , let
�SVU

𝑖 be the estimated Shapley value for player 𝑧𝑖 as

computed by Li and Yu [37]. Denote by 𝜌U𝑚 = E[∑𝑛
𝑖=1 Var(

�SVF

𝑖 )]/E[
∑𝑛

𝑖=1 Var(
�SVU

𝑖 )] with𝑚 samples.

We have lim𝑚→∞ 𝜌U𝑚 = 𝑐U, where we use Algorithm 1 for the differential matrix estimation and 𝑐U ≤
1−1/𝑛 is a constant based on the utility function. Specifically, with the condition 2Cov(�SVU

𝑖 ,
�SVU

𝑗 ) >
𝑐0 (Var(�SVU

𝑖 ) +Var(
�SVU

𝑗 )) for any arbitrage players 𝑧𝑖 and 𝑧 𝑗 , we have 𝑐U ≤ (1− 1/𝑛) (1−𝑐0). □

Theorem 6.4. Given a set of players N , let
�SVC

𝑖 be the estimated Shapley value for player 𝑧𝑖

as computed by Zhang et al. [72]. Denote by 𝜌C𝑚 = E[∑𝑛
𝑖=1 Var(

�SVF

𝑖 )]/E[
∑𝑛

𝑖=1 Var(
�SVC

𝑖 )] with𝑚
samples.We have lim𝑚→∞ 𝜌C𝑚 = 𝑐C,where we use Algorithm 1 for the differential matrix estimation and

𝑐C ≤ 1− 1/𝑛 is a constant based on the utility function with the condition that ifU(S1) ≥ U(S2), we
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haveU(N \S1) ≤ U(N \S2). Specifically, with the condition 2Cov(�SVC

𝑖 ,
�SVC

𝑗 ) > 𝑐0 (Var(
�SVC

𝑖 ) +
Var(�SVC

𝑗 )) for any arbitrage players 𝑧𝑖 and 𝑧 𝑗 , we have 𝑐U ≤ (1 − 1/𝑛) (1 − 𝑐0). □

In general, the covariance between Shapley value estimators of [37, 72] is appreciable as [37, 72]

reuses each sample and each Shapley value estimator receives a substantial portion of duplicate

samples. Therefore, 𝑐0 is a non-trivial value.

Interpretation of superiority. Approach F yields an equal or smaller expected sum of variances,

generally leading to equal or lower estimation error (e.g., root mean square error). Here we show

how to connect the expected sum of variances with the estimation error for Shapley values. The

expected sum of variances for estimated Shapley values is defined as

E[
𝑛∑︁
𝑖=1

Var(�SV𝑖 )] = E[
𝑛∑︁
𝑖=1

E(�SV𝑖 − E[�SV𝑖 ])2] .

For the unbiased estimator
�SV𝑖 , that is, E[�SV𝑖 ] = SV𝑖 , we have

E[
𝑛∑︁
𝑖=1

Var(�SV𝑖 )] = E[
𝑛∑︁
𝑖=1

E(�SV𝑖 − SV𝑖 )2],

which measures the expected sum of square errors. Therefore,

E[∑𝑛
𝑖=1 Var(�SV𝑖 )] can be used as an appropriate evaluation metric for unbiased Shapley value

estimation.

Complexity. We analyze the complexity of the proposed algorithms.

Theorem 6.5. Algorithms 1 - 5 require 𝑂 ( 𝑛
𝜀2
log

𝑛
𝛿
) samples to reach an (𝜀, 𝛿)-approximation in

RMSE (see Section 7). □

Space and time cost. We analyze the space and time cost of the proposed algorithms.

Theorem 6.6. The space consumption of Algorithm 4 is𝑂 (𝑛); the space consumption of Algorithms 1

and 5 is 𝑂 (𝑛2); the space consumption of Algorithms 2 and 3 is 𝑂 (𝑛3). The runtime per sample for

Algorithms 4 and 5 is 𝑂 (𝑛 + 𝑢 (𝑛)); the runtime per sample for Algorithms 1 and 2 is 𝑂 ( 𝑛2

log𝑛
+ 𝑢 (𝑛));

the runtime per sample for Algorithms 3 is 𝑂 (𝑛2 + 𝑢 (𝑛)), where 𝑢 (𝑛) is the time complexity of the

utility functionU(·) with 𝑛 players. □

7 Experiments
In this section, we present experimental results evaluating the effectiveness and efficiency of the

proposed algorithms for Shapley value estimation.

7.1 Experiment Setup
We conduct experiments on a server with two Intel(R) Xeon(R) Platinum 8383C CPUs @ 2.70GHz

and 256GB memory, running Ubuntu 20.04.6 LTS.

7.1.1 Methods Compared. We compare our proposed algorithms with three representative al-

gorithms based on sampling [8, 37, 72] and two representative algorithms based on optimiza-

tion [13, 44].

The sampling-based methods include

• MC [8]: the Monte Carlo simulation algorithm based on marginal contributions.

• GELS [37]: the Monte Carlo simulation algorithm based on utilities.

• CC [72]: the Monte Carlo simulation algorithm based on complementary contributions.
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The optimization-based methods include

• KernelSHAP [44]: the kernel-based optimization method based on utility sampling.

• PairedSHAP [13]: the enhanced algorithm of KernelSHAP based on pairwise utility sampling.

We compare five versions of the methods proposed in this paper.

• Diff: the proposed algorithm based on the differential matrix with the unstratified strategy

using Approach F (Algorithm 1).

• S-Diff: the proposed algorithm based on the differential matrix with the stratified strategy

using Approach F (Algorithm 2).

• S-Diff+: the proposed algorithm based on the differential matrix with the suboptimal stratified

strategy (Algorithm 3).

• Diff-: the proposed algorithm based on the differential matrix with the unstratified strategy

using Approach P (Algorithm 4).

• S-Diff-: the proposed algorithm based on the differential matrix with the stratified strategy

using Approach P (Algorithm 5).

7.1.2 Evaluation Tasks. To demonstrate the effectiveness and efficiency of the proposed algorithms,

we estimate Shapley values and conduct empirical analysis in four distinct application scenarios

including two cooperative games and two data valuation tasks.

A voting game [55]. In a non-symmetric voting game simulating a U.S. presidential election

designed by Owen [55], players vote with the principle of majority rule. The Shapley value can

be regarded as a metric for evaluating the voting influence of each player. The set of players for

a voting game is N = {𝑧1, . . . , 𝑧51}. For any coalition S (S ⊆ N ), the utility function for a voting

game is

U𝑣 (S) =
{
1, if

∑
𝑧𝑖 ∈S𝑤𝑖 ≥ 1

2

∑
𝑧 𝑗 ∈N 𝑤 𝑗 ,

0, otherwise,

where {𝑤1, . . . ,𝑤51} = {45, 41, 27, 26, 26, 25, 21, 17, 17, 14, 13, 13, 12, 12,
12, 11, 10, . . . , 10︸     ︷︷     ︸

4

, 9, . . . , 9︸  ︷︷  ︸
4

, 8, 8, 7, . . . , 7︸  ︷︷  ︸
4

, 6, . . . , 6︸  ︷︷  ︸
4

, 5, 4, . . . , 4︸  ︷︷  ︸
9

, 3, . . . , 3︸  ︷︷  ︸
7

} denote the weights of votes.

An airport game [40]. In an airport game for airstrip cost allocation, players (i.e., planes) need

to share the cost determined by the maximal size of the planes. The Shapley value is the established

solution to distribute the airstrip cost among different planes of various sizes equitably. The set of

players for an airport game is N = {𝑧1, . . . , 𝑧500}. For any coalition S (S ⊆ N ), the utility function

for an airport game is

𝑣𝑎 (S) = max

𝑧𝑖 ∈S
{𝑐𝑖 },

where 𝑐𝑖 is the cost of player 𝑧𝑖 when building airstrip exclusively and 𝑐1, . . . , 𝑐500 are randomly

generated integers in [1, 100].
We subsequently introduce two data valuation tasks. In a data valuation task, players are the data

points used in the training of a machine learning model. The Shapley value is utilized to evaluate

the contribution of each player to the model’s utility.

The Iris data valuation task. Consider a ternary classification data valuation task for Iris

dataset prediction, where we employ a support vector machine (SVM) classifier as the predictive

model and the prediction accuracy on a validation set as the utility function. Specifically, we employ

the Iris dataset from the UCI machine learning repository [21] in this task. A subset of 100 data

points is randomly selected for training as the set of players N , and the remaining 50 points are
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Fig. 1. Shapley value computation effectiveness (mean error).

used for validation. The utility function for a coalition S is defined as the validation accuracy of

the model trained over S.

The Breast Cancer data valuation task. Consider a binary classification data valuation task

for breast cancer prediction, where we employ a support vector machine classifier as the predictive

model and the prediction accuracy on a validation set as the utility function. Specifically, we employ

the Breast Cancer Wisconsin dataset from the UCI machine learning repository [68] in this task. A

subset of 600 data points is randomly selected for training as the set of playersN , and the remaining

99 points are used for validation. The utility function for a coalition S is defined as the validation

accuracy of the model trained over S.

7.1.3 Evaluation Metrics.

Mean error. Given the benchmark Shapley values SV𝑖 and the estimated Shapley values�SV𝑖 (𝑖 = 1, . . . , 𝑛), the mean error for the estimated Shapley values compared to the benchmark

Shapley values is

mean error =
1

𝑛

𝑛∑︁
𝑖=1

����SV𝑖 − SV𝑖

��� .
Root mean square error (RMSE). Given the benchmark Shapley values SV𝑖 and the estimated

Shapley values
�SV𝑖 (𝑖 = 1, . . . , 𝑛), the root mean square error for the estimated Shapley values

compared to the benchmark Shapley values is

RMSE =

(
1

𝑛

𝑛∑︁
𝑖=1

����SV𝑖 − SV𝑖

���2)1/2 .
Maximum error. Given the benchmark Shapley values SV𝑖 and the estimated Shapley values�SV𝑖 (𝑖 = 1, . . . , 𝑛), the maximum error for the estimated Shapley values compared to the benchmark

Shapley values is

maximum error = max

𝑖

����SV𝑖 − SV𝑖

��� .
Computing the exact Shapley value SV𝑖 for evaluation purposes is prohibitively expensive

because the computation cost grows exponentially with the number of players. Therefore, we use

the estimated Shapley value computed by the classic Monte Carlo simulation algorithm based on

complementary contributions [72] with 500k samples as the benchmark Shapley value for the data

valuation tasks in Figures 1-3. For the cooperative games, we employ the Shapley value reported

by Castro et al. [8] for the voting game and those computed by Littlechild and Owen [39] for the

airport game as the benchmark Shapley values.
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Fig. 2. Shapley value computation effectiveness (RMSE).
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Fig. 3. Shapley value computation effectiveness (maximum error).
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Fig. 4. Shapley value computation efficiency.

7.2 Effectiveness
We experimentally analyze the performance of Diff-, Diff, S-Diff-, S-Diff, and S-Diff+ with the same

number of samples across four tasks: Voting, Airport, Iris, and Breast Cancer. Specifically, we set

𝑚init =
𝑚
2
for S-Diff+ in Sections 7.2 and 7.3. The empirical results, shown in Figures 1-3 consistently

reveal the superiority of the proposed methods based on the differential matrix compared to the

baselines across all essential metrics including mean error, RMSE, and maximum error. Particularly,

RMSE, S-Diff-, S-Diff, and S-Diff+ show stable superiority compared to the state-of-the-art baselines

CC and GELS, reconciling with Theorems 6.3 and 6.4 since RMSE is an estimator for the standard

deviation of the estimated Shapley values. Moreover, Diff and S-Diff consistently outperform Diff-

and S-Diff, reconciling with Theorem 6.1. Our methods are also highly robust as the errors steadily

decline as the number of samples increases. Diff- and Diff performs relatively better in large-scale

applications since the number of strata is larger in such a case and each stratum receives relatively

fewer samples. S-Diff-, S-Diff, and S-Diff+ suffer from insufficient samples in such a case. Notably,

due to the instability of the maximum error, the trend of smaller errors is significantly perturbed in

Figure 3 as the number of samples increases.
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Fig. 5. Effect of𝑚init.

7.3 Efficiency
According to Section 7.2, RMSE is a relatively stable metric for estimation quality. Therefore, it is

natural to evaluate the efficiency of algorithms by exploring the required time to achieve a target

RMSE. Specifically, we conduct an empirical analysis across four various tasks with various target

RMSE in this section. Figure 4 shows the required time of each algorithm to achieve the same target

RMSE. We omit some underperforming baselines in each figure for easy reading. In cooperative

games, existing methods with much simpler logic MC and CC exhibit higher efficiency, while Diff,

S-Diff, and S-Diff+ offer limited improvement. As stated in Theorem 6.6, each sample in Diff, S-Diff,

and S-Diff+ is used to update𝑂 ( 𝑛2

log𝑛
) elements, while the time cost for computing utility functions

in cooperative games is relatively small. The higher time cost for updating elements rather than

computing utility functions in cooperative games leads to less efficiency of Diff, S-Diff, and S-Diff+.

However, in the data valuation task, where model training is the primary time cost per sample,

S-Diff and S-Diff+ require less time than baseline methods to reach the same RMSE level. As the

number of players increases, we observe that Diff- and S-Diff- outperform Diff, S-Diff, and S-Diff+

in the airport and breast cancer tasks, as they only need to update 𝑂 (𝑛) elements per sample on

average, making them more efficient.

7.4 Effect of𝑚init

In Algorithm 3, we use samples of size𝑚init to estimate the variance of the utilities in each stratum

and then compute a sample allocation. Here, we analyze the effect of𝑚init. We run an experiment

of 2000 × 𝑛 samples for each game and set 𝑚init from 100 × 𝑛 to 1500 × 𝑛 for S-Diff+. Figure 5

shows the mean error, RMSE, and the maximum error of S-Diff+ for each game with different𝑚init.

Overall, the impact of𝑚init on the results is relatively minor, but it can be observed that the error

gradually increases as𝑚init grows. One possible explanation is that S-Diff+ requires only a small

number of samples to compute an effective sample allocation. As𝑚init increases, fewer samples are

applied to this suboptimal sample allocation, gradually increasing error.

7.5 Scalability
To evaluate our proposed algorithms in large-scale scenarios, we present the runtime of each

algorithm with a fixed sample size rather than error or RMSE, as obtaining an accurate benchmark

for large scales within a meaningful time is not feasible. For the breast cancer task, we vary the

number of players to 10, 30, 60, 100, 300, and 600. For larger scales, we use a real Abalone dataset

from the UCI machine learning repository [53], randomly sampling 500, 1000, 1500, and 2000 data

points for training and computing the Shapley values based on a test set of 200 data points. Figure 6

presents the runtime of each algorithm with 1000 × 𝑛 samples as the number of players increases.

The time cost of our proposed algorithms is generally higher than that of MC and CC with the
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Fig. 6. Shapley value computation scalability.

sample size. Nevertheless, our algorithms should achieve a better approximation, showing lower

error and RMSE with the same runtime. Owing to fewer updates of elements, Diff- and S-Diff-

exhibit similar time costs to GELS, which performs better than CC in large-scale scenarios. Similarly,

Diff shows time costs comparable to GELS owing to lower space costs and faster updates. As the

scale increases beyond 2000, S-Diff and S-Diff+ may encounter memory issues due to the space

cost of 𝑂 (𝑛3), while Diff-, Diff, and S-Diff- remain efficient.

8 Conclusion
Our study introduces a novel method for Shapley value computation that leverages the efficiency

axiom to achieve lower variances than existing methods. By utilizing the innovative concept of the

differential matrix and employing a least-squares optimization approach, we provide more accurate

estimates. Our Monte Carlo methods, including a stratified approach, further reduce variances. The

superiority of the proposed method using the efficiency axiom is confirmed through mathematical

analysis and experimental validation, opening a new direction for Shapley value computation in

large-scale applications.
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A Algorithm
B Proofs
B.1 Proof of Theorem 4.3

Proof. We solve the least-squares problem by transforming it into a standard form min | |𝐴𝑥 − 𝑏 | |2 .

In this case, we let 𝑥 =
©­­«
SV1

.

.

.

SV𝑛

ª®®¬ and 𝑏 =

©­­­­«
ΔSV1,2

ΔSV1,3

.

.

.

ΔSV𝑛−1,𝑛

ª®®®®¬
.

We could find that 𝑥 has dimension 𝑛 and 𝑏 has dimension 𝑛 (𝑛 − 1)/2. Then we could obtain that𝐴 is a matrix with size 𝑛 (𝑛 − 1)/2 ×𝑛,
and

𝐴𝑇 =

©­­­­­­«

1 1 · · · 1 0 0 · · · 0

−1 0 · · · 0 1 1 · · · 0

0 −1 · · · 0 −1 0 · · · 0

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.
. . .

.

.

.

0 0 · · · −1 0 0 · · · −1

ª®®®®®®¬
.

Then | |𝐴𝑥 − 𝑏 | |2 is the same as the original objective function. We know that the analytic solution of the least-squares problem satisfies the

linear equations system𝐴𝑇𝐴𝑥 = 𝐴𝑇𝑏. Since
∑𝑛

𝑖=1 SV𝑖 = U(N) − U(Ø) , we have SV𝑖 =
1

𝑛

∑𝑛
𝑗=1 ΔSV𝑖,𝑗 + 1

𝑛
[U(N) − U(Ø) ] . □
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Algorithm 6: GreddyFill(N )

1 for 𝑘 = 1 to ⌊ 𝑛
2
⌋ do

2 L ← N;

3 while ∃𝑚𝑘
𝑖,𝑗

= 0 do
4 S ← Ø, 𝑙 ← 1;

5 while |S | < 𝑘 do
6 if L = Ø then
7 L = N;

8 Seek J containing all the elements s.t.𝑚𝑘
𝑙,𝑗

= 0;

9 if J = Ø then
10 𝑙+ = 1;

11 continue;

12 else
13 if 𝑧𝑙 ∈ L then
14 S = S ∪ {𝑧𝑙 }, L = L \ J;
15 𝑙+ = 𝑘 ;

16 𝑢 ← U(S) , 𝑛𝑢 ← U(N \ S) ;
17 for 𝑧𝑖 ∈ S do
18 for 𝑧 𝑗 ∉ S do
19 �U𝑘

𝜋𝑡 (𝑖 ),𝜋𝑡 ( 𝑗 )+ = 𝑢,𝑚𝑘
𝑖,𝑗
+ = 1;

20 �U𝑛−𝑘
𝜋𝑡 ( 𝑗 ),𝜋𝑡 (𝑖 )+ = 𝑛𝑢,𝑚𝑛−𝑘

𝑗,𝑖
+ = 1;

21 𝑐+ = 2;

B.2 Proof of Theorem 5.1
Proof. According to Equation 1, we have (denote N \ {𝑧𝑖 } by N\𝑖 and S ∪ {𝑧𝑖 } by S∪𝑖 )

SV𝑖 − SV 𝑗 =
1

𝑛
[

∑︁
S⊆N\𝑖

U(S∪𝑖 ) − U(S)(𝑛−1
|S|

) −
∑︁
S⊆N\𝑗

U(S∪𝑗 ) − U(S)(𝑛−1
|S|

) ]

=
1

𝑛

∑︁
S⊆N\𝑖,𝑗

U(S∪𝑖 ) − U(S∪𝑗 )(𝑛−1
|S|

) +
U(S∪𝑖 ) − U(S∪𝑗 )( 𝑛−1

|S|+1
)

=
1

𝑛 − 1

∑︁
S⊆N\𝑖,𝑗

U(S∪𝑖 ) − U(S∪𝑗 )(𝑛−2
|S|

) =
1

𝑛 − 1

∑︁
𝑧𝑖 ∈S

U(S)( 𝑛−2
|S|−1

) − 1

𝑛 − 1

∑︁
𝑧𝑗 ∈S

U(S)( 𝑛−2
|S|−1

) .
□

B.3 Proof of Theorem 5.3
Proof. We have U𝑖,𝑗 = 1

𝑛−1
∑

𝑧𝑖 ∈S,𝑧 𝑗 ∉S
U(S)
( 𝑛−2|S|−1)

. The probability of a specific coalition S being selected is proportional to

1

|S| (𝑛−|S|) ( 𝑛|S|)
=
|S|!(𝑛−|S|) !
|S| (𝑛−|S|)𝑛! =

( |S|−1) !(𝑛−|S|−1) !
𝑛!

= 1

𝑛 (𝑛−1) ( 𝑛−2|S|−1)
∝ 1

( 𝑛−2|S|−1)
. Therefore, Û𝑖,𝑗 /𝑚𝑖,𝑗 is an unbiased estimator of U𝑖,𝑗 .

According to Theorem 5.1, ΔSV𝑖,𝑗 = U𝑖,𝑗 − U𝑗,𝑖 . Therefore,
�ΔSV𝑖,𝑗 = Û𝑖,𝑗 /𝑚𝑖,𝑗 − Û𝑗,𝑖/𝑚 𝑗,𝑖 is an unbiased estimator of ΔSV𝑖,𝑗 . □

B.4 Proof of Theorem 5.8
Proof. The probability that a coalition S in𝔖𝑘

belongs to𝔖𝑘
𝑖\𝑗 is the probability that 𝑧𝑖 belongs to S and 𝑧 𝑗 does not, i.e.,

𝑘 (𝑛−𝑘 )
𝑛 (𝑛−1) .

Thus, it is easy to see that with𝑚𝑘 samples observed, the expected sample size of𝔖𝑘
𝑖\𝑗 is

E[𝑚𝑖,𝑗,𝑘 ] =
𝑘 (𝑛 − 𝑘 )
𝑛 (𝑛 − 1)𝑚𝑘 .

Therefore, we have

E[
∑︁

1≤𝑖< 𝑗≤𝑛
Var(�ΔSV𝑖,𝑗 ) ] =

1

𝑛2 (𝑛 − 1)2
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑛−1∑︁
𝑘=1

𝜎2

𝑖,𝑗,𝑘

𝑚𝑖,𝑗,𝑘

=
1

𝑛 (𝑛 − 1)

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑛−1∑︁
𝑘=1

𝜎2

𝑖,𝑗,𝑘

𝑘 (𝑛 − 𝑘 )𝑚𝑘

.

□
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B.5 Proof of Theorem 5.9
Proof. According to Theorem 5.8 and using the Cauchy-Schwarz inequality, we can get

E[
∑︁

1≤𝑖< 𝑗≤𝑛
Var(�ΔSV𝑖,𝑗 ) ]

𝑛−1∑︁
𝑘=1

𝑚𝑘 ≥ (
𝑛−1∑︁
𝑘=1

√√√
𝑛 (𝑛 − 1)
𝑘 (𝑛 − 𝑘 )

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝜎2

𝑖,𝑗,𝑘
)2 .

According to the equality condition of the Cauchy-Schwarz inequality, we have

𝑚𝑘 ∝

√√√ 𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝜎2

𝑖,𝑗,𝑘

𝑘 (𝑛 − 𝑘 ) .

□

B.6 Proof of Theorem 6.1
Proof. Note that all

�ΔSV𝑖,𝑗 have the same expectation of sample sizes. Assume it is𝑚, then E[Var(�ΔSV𝑖,𝑗 ) ] = 1

𝑚
𝜎2

𝑖,𝑗 . Thus we

only need to consider

SVP

1
=

1

𝑛

𝑛∑︁
𝑗=1

ΔSV1, 𝑗 +
1

𝑛
(U(N) − U(Ø) ), SVP

𝑖 = SV1 − ΔSV1,𝑖 (𝑖 ≠ 1), SVF

𝑖 =
1

𝑛

𝑛∑︁
𝑗=1

ΔSV𝑖,𝑗 +
1

𝑛
(U(N) − U(Ø) )

as discrete random variables, and prove that when 𝑛 > 5,

𝑛∑︁
𝑖=1

Var(SVP

𝑖 ) >
𝑛∑︁
𝑖=1

Var(SVF

𝑖 ) .

Since

Var(SVP

1
) = Var

(
1

𝑛

𝑛∑︁
𝑗=1

ΔSV1, 𝑗

)
=

1

𝑛2

𝑛∑︁
𝑗=1

𝜎2

1, 𝑗 ,

Var(SVP

𝑖 ) = Var

(
1

𝑛

∑︁
𝑗≠𝑖

ΔSV1, 𝑗 −
𝑛 − 1

𝑛
ΔSV1,𝑖

)
=

1

𝑛2

∑︁
𝑗≠𝑖

𝜎2

1, 𝑗 +
(𝑛 − 1)2

𝑛2
𝜎2

1,𝑖 (𝑖 ≠ 1),

we have

𝑛∑︁
𝑖=1

Var(SVP

𝑖 ) =
(
(𝑛 − 1)2

𝑛2
+ (𝑛 − 1)

𝑛2

) 𝑛∑︁
𝑗=1

𝜎2

1, 𝑗 =
(𝑛 − 1)

𝑛

𝑛∑︁
𝑗=1

𝜎2

1, 𝑗 .

On the other hand,

Var(SVF

𝑖 ) = Var

(
1

𝑛

𝑛∑︁
𝑗=1

ΔSV𝑖,𝑗

)
=

1

𝑛2

𝑛∑︁
𝑗=1

Var(ΔSV𝑖,𝑗 ) =
1

𝑛2

𝑛∑︁
𝑗=1

𝜎2

𝑖,𝑗 .

Then

𝑛∑︁
𝑖=1

Var(SVF

𝑖 ) =
1

𝑛2

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝜎2

𝑖,𝑗 ≤
1

𝑛2

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

2(𝜎2

1,𝑖 + 𝜎2

1, 𝑗 ) =
4

𝑛

𝑛∑︁
𝑗=1

𝜎2

1, 𝑗 ≤
𝑛 − 1

𝑛

𝑛∑︁
𝑗=1

𝜎2

1, 𝑗 =

𝑛∑︁
𝑖=1

Var(SVP

𝑖 ) .

□

B.7 Proof of Theorem 6.2
Proof. Algorithm 1: According to Theorem 4.3, we have

Var(�SV𝑖 ) = Var

(
1

𝑛

𝑛∑︁
𝑗=1

�ΔSV𝑖,𝑗 +
1

𝑛
(U(N) − U(Ø) )

)
=

1

𝑛2

𝑛∑︁
𝑗=1

Var(�ΔSV𝑖,𝑗 ) +
2

𝑛2

𝑛∑︁
𝑗=1

𝑛∑︁
𝑙=1

Cov(�ΔSV𝑖,𝑗 , �ΔSV𝑖,𝑙 )

=
1

𝑛2

𝑛∑︁
𝑗=1

𝜎2

𝑖,𝑗

𝑚𝑖,𝑗

+ 2

𝑛2

𝑛∑︁
𝑗=1

𝑛∑︁
𝑙=1

𝜎2

𝑖,𝑗,𝑙

𝑚𝑖,𝑗

.

Similar to the proof of Theorem 5.8, we have

E[
𝑛∑︁
𝑖=1

Var(�SVF

𝑖 ) ] =
2(𝑛 − 1) ∑𝑛−1

𝑘=1
1

𝑘

𝑛𝑚

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

(
𝜎2

𝑖,𝑗 +
𝑛∑︁
𝑙=1

𝜎2

𝑖,𝑗,𝑙

)
.

Algorithm 2: Similar to the proof of Theorem 5.8 with𝑚𝑘 =

1

𝑘 (𝑛−𝑘 )∑𝑛−1
𝑘=1

1

𝑘 (𝑛−𝑘 )
, we can calculate

E[
𝑛∑︁
𝑖=1

Var(�SVF

𝑖 ) ] =
2(𝑛 − 1) ∑𝑛−1

𝑘=1
1

𝑘

𝑛𝑚

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑛−1∑︁
𝑘=1

(
𝜎2

𝑖,𝑗,𝑘
+

𝑛∑︁
𝑙=1

𝜎2

𝑖,𝑗,𝑙,𝑘

)
.
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□

B.8 Proof of Theorem 6.3

Proof. Following the work of Li and Yu [37], we have E[∑𝑛
𝑖=1 Var(

�SVU

𝑖 ) ] =
2(∑𝑛

𝑘=1
1

𝑘
)2

𝑚

∑𝑛
𝑖=1 𝜎

2

𝑖 , where 𝜎𝑖,𝑗 is the vari-

ance of the random variable over the set {U(S) |𝑧𝑖 ∈ S} with 𝑃𝑟 (U = U(S) ) = 1

( 𝑛−2|S|−1)
. Then we can calculate 𝑐U =

lim𝑚→+∞ E[∑𝑛
𝑖=1 Var(

�SVF

𝑖 ) ]/E[
∑𝑛

𝑖=1 Var(
�SVU

𝑖 ) ] . Therefore, 𝑐U ≤ 1 − 1/𝑛. Moreover, with the condition 2Cov(�SVU

𝑖 ,
�SVU

𝑗 ) >

𝑐0 (Var(�SVU

𝑖 ) + Var(
�SVU

𝑗 ) ) , to make

∑𝑛
𝑖=1

�SVU

𝑖 = U(N) . We have

E[Var(�SVF

𝑖 ) ] =
(𝑛 − 1)2

𝑛2
E[Var(�SVU

𝑖 ) ] +
1

𝑛2

∑︁
𝑗≠𝑖

E[Var(�SVU

𝑗 ) ] −
2(𝑛 − 1)

𝑛2

∑︁
𝑗≠𝑖

E[Cov(�SVU

𝑖 ,
�SVU

𝑗 ) ] .

Therefore, we have

∑𝑛
𝑖 E[Var(�SVF

𝑖 ) ] = 𝑛−1
𝑛

∑𝑛
𝑖 E[Var(�SVU

𝑖 ) ] −
2(𝑛−1)
𝑛2

∑
1≤𝑖< 𝑗≤𝑛 E[Cov(�SVU

𝑖 ,
�SVU

𝑗 ) ] <

(𝑛−1) (1−𝑐
0
)

𝑛

∑𝑛
𝑖 E[Var(�SVU

𝑖 ) ], which means 𝑐U ≤ (1 − 1/𝑛) (1 − 𝑐0 ) . □

B.9 Proof of Theorem 6.4
Proof. We state the case that two algorithms have the sample allocation (i.e., identical𝑚𝑘 ). Denote by 𝐶𝐶

𝑖,𝑘

N = 𝐶𝐶N (S),U𝑖,𝑘 =

U(S), ( |S | = 𝑘, 𝑧𝑖 ∈ S) , and 𝜎2

𝑖,𝑘
= Var(𝐶𝐶𝑖,𝑘

N ) . Following the work of Zhang et al. [72], we have (note that 𝜎2

𝑖,𝑛 = 0) Var(SVC

𝑖 ) =
1

𝑛2

∑𝑛−1
𝑘=1

1

𝑚𝑖,𝑘
𝜎2

𝑖,𝑘
, where𝑚𝑖,𝑘 is the number of samples for𝐶𝐶

𝑖,𝑘

N . Note that 𝜌C

𝑚 is also the ratio between the coefficient of the coalition S

in the expression of
�SVF

and the coefficient of the sample S in the expression of
�SVC

, which is getting smaller when𝑚 is insufficient.

The limitation of this ratio is no more than 1 − 1/𝑛.
Moreover, since we have the condition U(N \ S1 ) ≤ U(N \ S2 ) . Denote by U𝑖\𝑘 = U(S), ( |S | = 𝑘, 𝑧𝑖 ∉ S) . We have

Cov(U𝑖,𝑘 ,U𝑖\𝑛−𝑘 ) < 0, which means

Var(𝐶𝐶𝑖,𝑘

N ) = Var(U𝑖,𝑘 − U𝑖\𝑛−𝑘 ) > Var(U𝑖,𝑘 ) + Var(U𝑖\𝑛−𝑘 ) .

Therefore, the variances of sampling complementary contributions are higher than the variances of sampling utilities. Then we have

𝑐C ≤ 1 − 1/𝑛. The rest of the proof is the same as Theorem 6.3. □

B.10 Proof of Theorem 6.5
Proof. According to Theorem 6.3, we only need to prove GELS [37] here. Assume | |U | |∞ ≤ 𝑢0 and U(S) ≥ 0. According to

Hoeffding’s inequality [27], for any 1 ≤ 𝑖 ≤ 𝑛

𝑃𝑟

(
𝑚𝑖

����SV𝑖 − SV𝑖

��� ≥ 𝑚𝑖𝜀√
𝑛

)
≤ 2 exp

(
− 2𝑚𝑖𝜀

2

𝑛𝑢2

0

)
,

where𝑚𝑖 is the number of samples assigned to the player 𝑧𝑖 . According to the inclusion-exclusion principle, if

(∑𝑛
𝑖=1

����SV𝑖 − SV𝑖

���) 1

2 ≥ 𝜀 ,

then there exists at least one player 𝑧𝑖 that satisfies

����SV𝑖 − SV𝑖

��� ≥ 𝜀√
𝑛
. Therefore, if𝑚𝑖 >

𝑛𝑢2
0

2𝜀2
ln

4𝑛
𝛿
,

𝑃𝑟

(����SV𝑖 − SV𝑖

��� ≥ 𝜀
√
𝑛

)
≤ 𝛿

2𝑛
, and 𝑃𝑟

©­­«
(

𝑛∑︁
𝑖=1

����SV𝑖 − SV𝑖

���) 1

2

≥ 𝜀
ª®®¬ ≤

𝛿

2

.

Furthermore, note that𝑚𝑖 ∼ 𝐵 (𝑚, 1
2
) . Using the Chernoff bound, if𝑚 > 16 ln

2𝑛
𝛿
, then𝑃𝑟 (𝑚𝑖 ≤ 𝑚

4
) ≤ 𝛿

2𝑛
. In summary, if𝑚 >

2𝑛𝑢2
0

𝜀2
ln

4𝑛
𝛿
,

then 𝑃𝑟

((∑𝑛
𝑖=1

����SV𝑖 − SV𝑖

���) 1

2 ≥ 𝜀

)
≤ 𝛿 . □

B.11 Proof of Theorem 6.6
Proof. The statement of space cost is trivial. In each sample process, Algorithms 4 and 5 update |S | − 1 or 𝑛 − |S | elements with a

utility sample U(S) , which means the time cost is𝑂 (𝑛 +𝑢 (𝑛) ) . According to Corollary 5.2, the time cost per sample of Algorithms 2. and

2 is𝑂 ( 𝑛2

log𝑛
+𝑢 (𝑛) ) . With each utility sample U(S) , Algorithm 3 updates |S | (𝑛 − |S | ) , so the time cost per sample of Algorithm 3 is

𝑂 (𝑛2 +𝑢 (𝑛) ) , □
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