
TabularMark: Watermarking Tabular Datasets for
Machine Learning

Yihao Zheng

Zhejiang University

Hangzhou, China

zhengyihao@zju.edu.cn

Haocheng Xia

University of Illinois

Urbana-Champaign

Urbana-Champaign, United States

hxia7@illinois.edu

Junyuan Pang

Zhejiang University

Hangzhou, China

junyuanpang@zju.edu.cn

Jinfei Liu

Zhejiang University

Hangzhou, China

jinfeiliu@zju.edu.cn

Kui Ren

Zhejiang University

Hangzhou, China

kuiren@zju.edu.cn

Lingyang Chu

McMaster University

Hamilton, Canada

chul9@mcmaster.ca

Yang Cao

Tokyo Institute of Technology

Tokyo, Japan

cao@c.titech.ac.jp

Li Xiong

Emory University

Atlanta, United States

lxiong@emory.edu

ABSTRACT
Watermarking is broadly utilized to protect ownership of shared

data while preserving data utility. However, existing watermarking

methods for tabular datasets fall short on the desired properties

(detectability, non-intrusiveness, and robustness) and only preserve

data utility from the perspective of data statistics, ignoring the

performance of downstreamMLmodels trained on the datasets. Can

we watermark tabular datasets without significantly compromising

their utility for training MLmodels while preventing attackers from

training usable ML models on attacked datasets?

In this paper, we propose a hypothesis testing-based watermark-

ing scheme, TabularMark. Data noise partitioning is utilized for

data perturbation during embedding, which is adaptable for numer-

ical and categorical attributes while preserving the data utility. For

detection, a custom-threshold one proportion z-test is employed,

which can reliably determine the presence of the watermark. Ex-

periments on real-world and synthetic datasets demonstrate the

superiority of TabularMark in detectability, non-intrusiveness, and

robustness.

CCS CONCEPTS
• Security and privacy→ Database and storage security.

KEYWORDS
Data Ownership; Watermark; Tabular Dataset; Machine Learning

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0636-3/24/10

https://doi.org/10.1145/3658644.3690373

ACM Reference Format:
Yihao Zheng, Haocheng Xia, Junyuan Pang, Jinfei Liu, Kui Ren, Lingyang

Chu, Yang Cao, and Li Xiong. 2024. TabularMark: Watermarking Tabular

Datasets for Machine Learning. In Proceedings of the 2024 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’24), October
14–18, 2024, Salt Lake City, UT, USA. ACM, New York, NY, USA, 15 pages.

https://doi.org/10.1145/3658644.3690373

1 INTRODUCTION
The proliferation of machine learning (ML) has brought significant

benefits to a wide range of industries, such as healthcare [26, 40,

49], retail [12, 34, 45], and finance [16, 24, 36]. Structured tabular

datasets (or relational data) are prevalent and used across many

sectors. However, the nature of datasets allows for near-zero cost

replication [42], making them susceptible to unauthorized copying

and use. There is a pressing need for a robust mechanism to assert

and protect the ownership of such datasets.

Watermarking is a widely adopted technique for asserting own-

ership and preventing unauthorized usage of shared data and have

been widely employed onmultimedia data such as images [3, 46, 55]

and audios [53, 54], and relational data [27]. A watermark is embed-

ded into original data usually through subtle perturbations. Data

owners can extract the watermark from suspicious data to claim

ownership. Typically, there are several minimum desired properties

of watermarking. 1) detectability: it can be reliably detected, with

the aid of some secret information; 2) non-intrusiveness: it should

not alter the data in a way that degrades its quality or usability; 3)

robustness: it should be resilient to manipulations.

Tabular data poses unique challenges due to its data charac-

teristics considering the desired properties above. 1) Tabular data

typically consists of precise values with each entry carrying sig-

nificant and specific information. There is little to no perceptual

redundancy compared to multimedia data, which makes it less

flexible for designing a watermark that satisfies both detectability

and non-intrusiveness, since even minor changes may significantly

impact data integrity or usability. 2) The mixture of different data

https://doi.org/10.1145/3658644.3690373
https://doi.org/10.1145/3658644.3690373

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Yihao Zheng et al.

types, including categorical and numerical, may require different

or more complex watermarking strategies. 3) Tabular data can un-

dergo a variety of data manipulations like insertions, deletions, and

foreign key replacements, and a watermark must be resilient to

such operations without being easily removed.

Watermarking schemes [3, 46, 53–55] that mainly focus on multi-

media are well-studied in the literature but are difficult to port over

for tabular datasets, due to the dependency of intrinsic patterns

or semantic information for a specific multimedia type. In order

to extend watermarking outside multimedia, many watermarking

schemes [2, 23, 25, 28, 30, 32, 43, 44] have been proposed specif-

ically for relational data. However, they are either not generally

applicable to all types of tabular data, or fall short in one or more

of the above properties. [2, 25] embed watermarks by modifying

the least significant bits (LSBs), causing them to be inapplicable to

categorical attributes. For example, embedding bits into encoded

categorical attributes (e.g., 0-6) can cause significant distortion and

may exceed the value range (e.g., modifying 0110 to 0111), violating

non-intrusiveness. Schemes proposed in [43, 44] opt to embed water-

mark bits into the statistics of the data. However, they necessitate

the use of primary keys in the partitioning algorithms. Primary

keys are not essential in tabular datasets, and replacing the original

primary key with a new column will prevent the correct extraction

of the watermarking information, violating robustness. In recent

years, studies in [23, 31] focus on reversible watermarking schemes

based on histogram shifting. These methods are limited to integer

attributes and unsuitable for floating-point attributes [15, 35, 39].

They also lack a theoretical guarantee on the false positive rate

for watermark detection, which weakens the detectability. Further-
more, nearly all existing methods [2, 25, 28, 30, 32, 43, 44] primarily

measure data utility (for non-intrusiveness) on the basic statistics of

data, such as mean and variance for query tasks. Given the current

prevalent use of tabular data for building ML models, the added

watermark should almost not affect the utility of the downstream

models, which we refer to as ML utility.

In this paper, we address the limitations of existing techniques

by proposing a simple yet effective hypothesis testing-based water-

marking scheme for tabular datasets, TabularMark. This scheme

partitions data noise into two divisions and introduces designed per-

turbations to specific cells in the embedding phase. In the detection

phase, the deviation distribution characteristics in the suspicious

datasets are examined by hypothesis testing.

To ensure detectability, we utilize the one proportion z-test to

detect the perturbations introduced in the embedding phase. As

different datasets are assumed to be collected independently, the de-

viation between a non-watermarked dataset and the original dataset

should be entirely random within the predefined range. Therefore,

we use the one proportion z-test to analyze the characteristics of

deviation distribution, which allows for reliable detection of water-

marks in watermarked data with a statistically improbable rate of

false positives. Additionally, we can adjust the z-test threshold to

statistically limit the false positive rate.

To ensure non-intrusiveness, we control the distortion on the

ML utility in the embedding phase by managing the number of

perturbed cells called key cells. Due to randomness in deviation, the

probability of the data deviation for a given cell falling within one

division is 0.5. Consequently, as the number of key cells increases,

the probability of all of them falling within the chosen division

exponentially decreases. Therefore, compared to the total number

of cells, only very few key cells are required to embed a robust

watermark. Because the deviation does not rely on a specific data

type, the embedding and detection of TabularMark can be applied

across different types of attributes. Whether numerical attributes or

categorical attributes are perturbed, the ML utility of watermarked

datasets remains almost unchanged thanks to the small number of

perturbed cells.

To ensure robustness, we require the data owner to keep the

relevant information from the watermark embedding phase confi-

dential, such as the locations of key cells. Without knowing the key

cells, attackers can only randomly perturb a large number of cells,

much more than the number of key cells, in an attempt to reduce

the z-score, an indicator of the z-test. Therefore, the ML utility of

attacked datasets may be significantly reduced. Additionally, we em-

ploy the most significant bits (MSBs) of multiple attributes to match

key cells in detected datasets to avoid primary key replacement

attacks.

Experiments on commonly used real-world datasets validate that

the watermark can be reliably detected in watermarked datasets.

Additionally, the scheme is proven to be non-intrusive to the ML

utility of watermarked datasets and robust against malicious attacks,

including insertion, deletion, and alteration attacks. For example,

the z-score on the Forest Cover Type increases by 18.6 after water-

marking, far exceeding the threshold of 1.96. Even if attackers insert

or delete up to 80% of the tuples from the watermarked Forest Cover

Type dataset, the watermark can still be detected. Besides, if attack-

ers successfully remove the watermark from the Forest Cover Type

dataset by alteration attacks, the XGBoost model trained on the

attacked dataset results in an average drop of 0.245 in the 𝐹1-score

compared to the model trained on the original dataset. However,

the watermarked dataset only causes an average decrease of 0.001

in the 𝐹1-score, thereby preserving the ML utility of the dataset.

We briefly summarize our contributions as follows.

• We propose a simple yet effective hypothesis testing-based water-

marking scheme TabularMark for tabular datasets using domain

partition and one proportion z-test. To our best knowledge, this is

the first study that utilizes random deviation to almost completely

preserve the ML utility of tabular datasets.

• To enhance robustness, we employ a hypothesis testing method

and multi-attribute matching to mitigate dependencies on data

types and primary keys, respectively. Furthermore, we model the

watermark removal and mathematically prove the hardness for

attackers to remove the watermark.

• We demonstrate the detectability, non-intrusiveness, and robust-

ness of TabularMark on popular real-world datasets for regres-

sion and classification tasks as well as explore the trade-offs

among multiple hyperparameters of the scheme on synthetic

datasets.

2 RELATEDWORK
In this paper, we focus on protecting the ownership of static tabular

datasets used for training ML models. The most related research is

relational database watermarking [2, 23, 25, 28, 30, 32, 43, 44]. In this

section, we review the progress in relational database watermarking

TabularMark: Watermarking Tabular Datasets for Machine Learning CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

and discuss the corresponding limitations. Although there are other

types of watermarking schemes, such as image watermarking [3, 46,

55], audio watermarking [53, 54], neural networkwatermarking [17,

38, 48],and large language model watermarking [14, 29], we do

not discuss these related works in detail due to the significant

differences in data structure from tabular datasets.

Non-Reversible Database Watermarking. The first watermark-

ing scheme [2] for relational databases was proposed in 2002. They

embedded watermarks by modifying the LSB (least significant bit)

of certain attributes in some tuples and decided whether to embed

a ‘0’ or ‘1’ in the LSB based on the parity of a hash value computed

from the concatenated primary keys and private keys. Inspired

by this work, subsequent studies [21, 50] improved on embedding

a single bit by embedding multiple bits within the selected LSBs.

However, these methods are less suitable for categorical attributes,

as encoded categorical attributes are mostly small-range integers

(e.g., 0-6), offering limited watermarking capacity and potentially

causing undesirable distortion. Another type of relational database

watermarking method opts to embed watermark bits into the statis-

tics of the data. Sion et al. [44] used marker tuples to partition the

tuples into different subsets, embedding the corresponding water-

mark bits in various subsets by modifying subset-related statistical

information and utilizing a majority voting mechanism to enhance

robustness. Shehab et al. [43] improved upon [44] by first optimiz-

ing the partitioning algorithm, avoiding the use of marker tuples

for subset partitioning and instead using hash values based on

primary keys and private keys, effectively resisting insertion and

deletion attacks. Furthermore, to minimize distortion, they mod-

eled the embedding of watermark bits as an optimization problem

and offered a genetic algorithm and a pattern search method to

solve this problem, effectively controlling data distortion. However,

the method [43] is strictly limited by the high requirements for

data distribution, and it is challenging to define the optimization

problem for categorical attributes with discrete and fixed value

ranges. Furthermore, it necessitates the use of primary keys for the

partitioning algorithm.

Reversible Database Watermarking. In recent years, many stud-

ies have focused on reversible watermarking schemes, where the

watermark can be extracted from the watermarked data and the

original data completely restored. Watermarking techniques based

on histogram shifting are a promising solution. [23] introduced

a reversible watermark algorithm based on histogram shifting in

groups. This method also utilized a message authentication code

(MAC) calculated with a private key and a primary key for group-

ing, defined a statistical quantity “prediction error” for plotting

histograms, and shifted the histogram to embed watermark bits in

each group. Similar histogram-based methods include [31], which

proposed a robust reversible watermarking mechanism based on

consecutive columns in histograms. Methods like those in [23, 31]

are limited to integer attributes and are not suitable for floating-

point attributes which are widely present in tabular datasets for

regression tasks. Thus, their application scenarios are constrained.

Due to the poor robustness of LSB methods, Li et al. [30] proposed a

reversible watermarking method by abandoning the LSB approach

and embedding watermark bits into the decimal digits. However, it

still has the same issues as the LSB methods.

Table 1: The summary of frequently used notations
Notation Description

𝑛 Number of cells

𝑛𝑤 Number of key cells

𝑛𝑔 Number of green key cells

𝑝 Positive axis boundary of the perturbation range

𝑘 Number of unit domains

𝛼 Significance level of the test for detecting a watermark

𝛽 Proportion affected by a certain attack relative to the

overall dataset

𝛾 Ratio of the lengths of green domains to red domains

𝐷𝑜 Original dataset

𝐷𝑤 Watermarked dataset

𝐷𝑠 Suspicious dataset

These schemes are mainly designed for database management

systems where the original database is constantly updated. In con-

trast, we focus on ML applications where a dataset is not frequently

modified, such as static data repositories in UCI Machine Learning

Repository [6]. TabularMark is designed based on this setting and

solves the above limitations. In addition to the proposed limita-

tions, existing relational database watermarking schemes ignore

the effect on the performance of downstream ML models trained

on the datasets but only consider changes in the mean or standard

deviation of certain attributes for traditional tasks such as query

answering. The target of this paper is to reduce the ML utility cost

of data owners by limiting the impact of schemes on models trained

on the watermarked dataset and to increase the ML utility cost of

attackers by aggravating degradation in model performance when

removing the watermark.

3 ALGORITHMS
In this section, we present the watermark embedding and detection

algorithms in detail. The process of TabularMark is illustrated in

Figure 1 and involves two stages: watermark embedding and water-

mark detection. Table 1 summarizes the frequently used notations.

Watermark Embedding

 Select key cells

Choose perturbation
values from

green domains

Perturb corresponding

key cells

oD Dw

 Attacker channel

Da

Watermark Detection

Count the number
of green key cells

 Calculate the z-score

and idenitfy the
ownership

Find key cells

Figure 1: Flowchart of TabularMark, where 𝐷𝑜 is the origi-
nal dataset, 𝐷𝑤 is the watermarked dataset, 𝐷𝑎 is the water-
marked dataset after suffered attacks.

3.1 Threat Model
To delimit the scope of this paper, we describe the abilities of at-

tackers as follows.

Considering the characteristics of TabularMark, we assume that

the attackers 1) have full access to the watermarked dataset; 2)

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Yihao Zheng et al.

are aware of the general process of the watermark embedding and

detection algorithms but do not know secret information, such

as the distribution of key cells or the specific attributes used for

choosing key cells; 3) cannot access the original dataset; and 4)

take into consideration not to excessively impact ML utility of the

watermarked dataset. For example, in alteration attacks, the range

of alteration to the cells would not exceed the perturbation range

of the watermark embedding algorithm by a large margin.

3.2 Watermark Embedding
In this section, we present the details of the watermark embedding

algorithm.

The watermark embedding approach draws inspiration from the

random deviations that exist between specific cells within a suspi-

cious dataset and those within the original dataset. This deviation

may arise from biases in the measuring instruments used during

data collection, or it could stem from differences in the data pro-

cessing procedures. For example, several institutions independently

survey the housing prices in different areas of a city. Due to factors

such as the scope of the survey, their data will not be exactly the

same and will have certain deviations relative to each other.

If the deviation range is randomly partitioned into two divisions,

the probability that the deviation of one cell of suspicious datasets

relative to the original dataset falls into one of these divisions is

0.5. If the deviations of multiple cells simultaneously fall into one

division, the probability will exponentially decrease. Conversely,

the characteristics of the deviation formed by artificially adding

perturbation from a particular division can serve as a watermarking

scheme. We assume that data owners can access the original dataset

to calculate the deviation when detecting the watermark. As we

focus onML applications where a dataset is not frequently modified,

it is feasible to access the original dataset.

It is reasonable to assume that the deviation will not be exces-

sively large. We approximate the deviation range using a custom

range [−𝑝, 𝑝] and utilize it as the perturbation range. The perturba-

tion range will be partitioned into two divisions, and values will be

selected from one division as noise to perturb key cells as a water-

mark. Figure 2 shows an example of a domain partition. We divide

the range [−𝑝, 𝑝] into 𝑘 unit domains which are further divided

into green domains and red domains in a 1:1 ratio. As illustrated

in Figure 2, the range [−𝑝, 𝑝] is partitioned into various red and

green domains of different sizes but with an overall equal length.

Based on the probability that the deviation of all the detected key

cells that fall into the specific type will decrease exponentially, the

watermark embedding algorithm only needs to perturb a small

number of cells. The characteristics of the deviation distribution

can be tested with one proportion z-test, which will be explained

in detail in Section 3.3.

−𝑝 0 𝑝

Red domain Green domain

Figure 2: An example of domain partition

For brevity, this paper focuses on the widely used tasks of classi-

fication and regression within the realm of ML. Tabular datasets

employed by these tasks chiefly comprise two types of attributes:

numerical attributes and categorical attributes, which can be used

by TabularMark to embed watermarks. Besides, we do not consider

the character traits of categorical attributes, but only the encoded

categorical attributes such as 0-6. Hence, the categorical attributes

can be regarded as special numerical attributes.

24.86 -3.45 11.72 37.21 -8.14 44.68 18.33 28.07 2.15

-8.14 44.68 18.33 28.07 2.15

Private

24.86 -3.45 11.72 37.21Private

-8.14 44.68 15.23 28.07 2.1524.86 -7.65 11.72 40.91Published

C1 C2 C3 C4 C496 C497 C498 C499 C500

①

②
f67890 bcdef0e3f2a1

-4.2 -3.1+3.7

③

Figure 3: An example of watermark embedding

A tabular dataset contains attributes 𝐴0, 𝐴1, . . . , 𝐴𝑣−1 and we

assume ML models using𝐴𝑣−1 as the prediction target. For simplic-

ity, we select key cells from one attribute. In Section 4, we verify

the effectiveness of TabularMark by embedding the watermark

into the attribute 𝐴𝑣−1. The algorithm can easily extend when the

watermarking scheme selects key cells from multiple attributes. Al-

gorithm 1 gives detailed information on the watermark embedding

algorithm when we select key cells from numerical attributes. We

first choose an attribute 𝐴𝑖 to which the watermark will be embed-

ded (Line 1). Then, the number of key cells 𝑛𝑤 and the boundary

of the perturbation range 𝑝 are determined based on the strength

of the watermark (Line 2). On the original dataset 𝐷𝑜 , we pick 𝑛𝑤
cells as key cells from the chosen attribute 𝐴𝑖 (Line 3). For each

key cell, we divide the perturbation range [−𝑝, 𝑝] into 𝑘 domains

equally, then randomly divided into 0.5𝑘 green domains and 0.5𝑘

red domains, and the random number seed is kept as a secret. In

practice, we tend to choose a relatively large value for 𝑘 , such that

within a small part of [−𝑝, 𝑝], the overall lengths of green domains

and red domains approach equality. Perturb the key cell by ran-

domly choosing a number from the green domains (Lines 4-9). After

perturbing all key cells, we finish the watermark embedding pro-

cess. The algorithm can be converted to categorical attributes with

simple modifications. As the value range of encoded categorical

attributes is discrete and relatively small, it does not necessitate

a predefined perturbation range. We choose to randomly divide

the possible categories into two domains, green and red, and then

select a category from the green domain to replace the original

category attribute.

Example 3.1. Figure 3 shows an example of the watermark em-

bedding algorithm for numerical attributes. Suppose the attribute

we embed a watermark has 500 cells. ① We select 50 key cells from

these cells, and 3 key cells out of them are indicated by checkmarks.

We set the perturbation range to [−5, 5]. ② For each key cell, we

use a random number to seed a random number generator. The

random seeds corresponding to each key cell are represented below

in hexadecimal format. Utilizing these seeds, we partition the range

[−5, 5] as illustrated in Figure 2. Since each key cell has a unique

seed, the resulting green and red domains are also different for

TabularMark: Watermarking Tabular Datasets for Machine Learning CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

each cell. Then, for each key cell, we select a random number as

data noise from its corresponding green domains (represented by

the green numbers under the random seeds) to perturb it. ③ After

perturbing all key cells in this manner, we obtain the watermarked

dataset, which is then ready for publishing.

Algorithm 1:Watermark Embedding Algorithm.

input :original dataset 𝐷𝑜 , selected attribute 𝐴𝑖

output :watermarked dataset 𝐷𝑤

1 choose an attribute 𝐴𝑖 to which the watermark is to be

added;

2 determine the values of 𝑝 , 𝑛𝑤 , and 𝑘 ;

3 select 𝑛𝑤 cells as key cells from the selected attribute;

4 foreach key cell do
5 use a random number to seed a random number

generator;

6 partition the range [−𝑝, 𝑝] into 𝑘 unit domains;

7 with this seed, randomly divide these domains into 0.5k

green domains and 0.5k red domains;

8 from the green domains, select a random number;

9 perturb the key cell with this random number;

3.3 Watermark Detection
In this section, we provide the details of the watermark detection

algorithm. Specifically, the watermark detection algorithm employs

a rigorous statistical measure to examine suspicious datasets, ensur-

ing successful detection even in the face of substantial attacks. We

assume that 𝐷𝑜 can be accessed during the watermark detection

process. Next, we introduce this measure in detail.

3.3.1 One Proportion Z-test. The one proportion z-test [18] is the

statistical tool utilized in the watermark detection algorithm. One

proportion z-test is a statistical test that determines whether a

single sample rate (e.g., the success rate) is significantly different

from a known or hypothesized population rate. We define the null

hypothesis 𝐻0 to detect the watermark as follows,

𝐻0 : The tabular dataset is not generated

by attacking the watermarked dataset.

Then we will test a statistic for a one proportion z-test as

𝑧 =
2 × (𝑛𝑔 − 0.5𝑛𝑤)√

𝑛𝑤
,

where 𝑛𝑤 is the total number of key cells and 𝑛𝑔 is the number of

green cells counted in the detection phase. The meaning of this

equation is to subtract the expected value from the observed value,

and then divide by the standard deviation of the observed value. In

the watermark detection algorithm, 𝑛𝑔 is the main observed value.

Given that in the watermark embedding algorithm, the length ratio

of green domains to red domains is one-to-one, the probability of

the deviations of the detected key cells relative to the key cells in the

original dataset falling within the green domains can be considered

24.86 -3.45 11.72 37.21 -8.14 44.68 18.33 28.07 2.15

-8.14 44.68 15.03 28.07 2.15

Private

24.86 -6.65 11.72 39.91Suspicious

C1 C2 C3 C4 C496 C497 C498 C499 C500

①

②

f67890 bcdef0e3f2a1

-3.20 -3.30+2.70

-3.20 -3.30+2.70
③

④

Figure 4: An example for watermark detection

as 0.5. Therefore, the expectation of 𝑛𝑔 is 0.5𝑛𝑤 and its standard

deviation is

√
0.25𝑛𝑤 .

A significance level 𝛼 needs to be defined according to the

strength of the scheme. Commonly, 𝛼 = 0.05 is used, which im-

plies a 5% risk of incorrectly rejecting the null hypothesis (𝐻0).

Subsequently, we need to calculate the 𝑝-value. The 𝑝-value is the

probability of observing a test statistic as extreme as, or more ex-

treme than, the value observed, under the assumption that the null

hypothesis is true. If the 𝑝-value is less than or equal to 𝛼 , we reject

the null hypothesis. This means that there is statistical evidence to

suggest that the sample proportion is significantly different from

the expected proportion. Conversely, if the 𝑝-value is greater, we

fail to reject the null hypothesis, suggesting that any observed dif-

ference could reasonably occur by random chance, implying that

no watermark is detected in the suspicious dataset 𝐷𝑠 . The 𝑝-value

can directly measure the magnitude of the false positive rate be-

cause a larger 𝑝-value indicates a higher probability of observing

the sample under the null hypothesis condition, which means a

higher false positive rate when we reject the null hypothesis.

3.3.2 Detection. In the watermark detection algorithm, 𝛼 will be

set directly to the value related to the z-score. As z-score and 𝑝-value

are negatively correlated, the larger the z-score, the smaller the

𝑝-value. Users can customize the threshold to adjust the strength of

the watermark detection algorithm. If the threshold of the 𝑝-value is

set to 0.05, the corresponding z-score threshold is 1.96. In Section 4,

we default the z-score threshold to 1.96.

Algorithm 2 details the steps of the watermark detection algo-

rithm for numerical attributes. For each key cell of 𝐷𝑠 , the partition

of green domains and red domains is recovered using the corre-

sponding random seed (Lines 3-4). Calculate the difference of this

key cell between 𝐷𝑠 and 𝐷𝑜 , and determine whether the difference

belongs to the divided green domains. If so, we mark this key cell as

a green cell (Lines 5-7). The process concludes with the calculation

of the z-score, which is compared to a predetermined threshold 𝛼 .

If the computed z-score surpasses 𝛼 , it indicates the presence of the

watermark in the dataset 𝐷𝑠 . In contrast, if the z-score falls below

𝛼 , it suggests that the watermark is not detected in 𝐷𝑠 (Lines 8-12).

The algorithm can be converted to categorical attributes by directly

determining whether a key cell in 𝐷𝑠 belongs to the green domain

to count the green cells.

Example 3.2. An example of the watermark detection algorithm

is shown in Figure 4.① First, we calculate the difference of all 50 key

cells between the private data and the suspicious data. ② Next, we

use the random seeds previously employed in watermark embed-

ding to restore the green domains and red domains corresponding

to each key cell. ③ If the difference of a key cell in the suspicious

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Yihao Zheng et al.

Algorithm 2:Watermark Detection Algorithm.

input :original dataset 𝐷𝑜 , suspicious dataset 𝐷𝑠 , selected

attribute 𝐴𝑖 , perturbation range [−𝑝, 𝑝], number of

unit domains 𝑘 , exact set of key cells and random

seeds

output : true or false
1 𝑛𝑔 ← 0;

2 foreach key cell do
3 use the corresponding random number to seed a random

number generator;

4 restore the green domains and red domains of [−𝑝, 𝑝];
5 calculate the difference between a key cell of 𝐷𝑠 and

that of 𝐷𝑜 ;

6 if the difference ∈ green domains then
7 𝑛𝑔 ← 𝑛𝑔 + 1;
8 𝑧← 2(𝑛𝑔−0.5𝑛𝑤)√

𝑛𝑤
;

9 if z ≥ 𝛼 then
10 return true;

11 else
12 return false;

data falls within its corresponding green domains, the key cell is

marked as a green cell. Otherwise, it is marked as a red cell. We find

that 30 out of the total 50 key cells are green, this indicates that 40%

of the green cells have been flipped by the attacker into red cells.

④ Given that the total number of key cells is 50, the correspond-

ing z-score is calculated to be 1.414. By determining whether the

z-score is greater than 𝛼 , we can determine whether the suspicious

data is watermarked.

3.3.3 Matching. In many scenarios, the relative positions of the tu-

ples requiring examination in the detected dataset are inconsistent

with those in the watermarked dataset. This inconsistency can be

caused by attacks, such as insertion or deletion attacks, which may

change the relative positions of tuples. Therefore, it is necessary to

locate these perturbed tuples. Considering that watermark schemes

reliant on primary keys are susceptible to primary key replacement

attacks, we need a matching algorithm to address this issue. In-

spired by the basic fact that for a tabular dataset, the probability

that the MSBs of multiple attributes are simultaneously equal at

the same time is low, and it’s difficult for attackers to substitute

them all, we choose MSBs of several attributes to form a special

primary key and check whether the primary key of a tuple in 𝐷𝑠 is

equal to the primary key of a tuple containing a key cell in 𝐷𝑜 .

Algorithm 3 details the steps to locate tuples with key cells in 𝐷𝑠 .

We first select MSBs of 𝑘 attributes as a special primary key (Line 1).

For each tuple containing key cells in 𝐷𝑜 , we use the corresponding

primary key to compare with the primary key of each tuple in 𝐷𝑑 .

We find the corresponding key cell when the tuple in𝐷𝑑 is matched

(Lines 3-8). Our practice shows that the effect of the watermark

detection algorithm is already effective when two attributes are

chosen, and the selected attributes are almost equivalent to a true

primary key when we choose three attributes.

Algorithm 3:Matching Algorithm.

input :original dataset 𝐷𝑜 , detected dataset 𝐷𝑑

output :key cells in 𝐷𝑜

1 select MSBs of 𝑘 attributes as a primary key;

2 𝑘𝑑𝑠 ← ∅ ;
3 foreach tuple containing key cell in 𝐷𝑜 do
4 foreach tuple in 𝐷𝑑 do
5 if primary key of 𝑡𝑑 = primary key of 𝑡𝑜 then
6 𝑘𝑑 ← key cell in 𝑡𝑑 ;

7 𝑘𝑑𝑠 ← 𝑘𝑑𝑠 ∪ {𝑘𝑑 };
8 return 𝑘𝑑𝑠;

A0 A1 A2 A3 A4
123 456 789 100 532
963 456 741 369 128
123 489 372 892 329

A0 A1 A2 A3 A4
963 456 741 369 128
123 489 372 892 329
123 456 789 100

Detected datase

532

t Original dataset

match

watermarked tuple: (123, 456, 789, 100, 532)

Figure 5: An example of matching tuples

To combine Algorithm 2 with Algorithm 3, we simply run Al-

gorithm 3 at the beginning of Algorithm 2 to match tuples, which

is designed to identify the perturbed tuples containing key cells,

especially in scenarios where the order of tuples is disrupted due

to some attacks such as insertion or deletion attacks.

Example 3.3. Figure 5 shows an example of using Algorithm 3 to

find perturbed tuples. The left side of the figure shows the detected

dataset and the right side is the original dataset. It can be observed

that the order of the detected dataset is scrambled compared to

the original dataset, making it difficult to find perturbed tuples

directly. We assume that the first tuple of the original dataset is the

watermarked tuple containing a key cell. We then select MSBs of

the first two attributes, 𝐴0 and 𝐴1, as a special primary key. Using

this special primary key, we compare tuples in the detected dataset.

When we compare to the third tuple of the detected dataset, both

values of MSBs of𝐴0 and𝐴1 equal the values in the special primary

key of the tuple. Finally, we successfully identify the perturbed

tuple in the detected dataset.

3.4 Analysis on Watermark Removal
In this section, to demonstrate the robustness of TabularMark, we
model the potential strategies of alteration attacks and mathemati-

cally prove the lower bound of the number of cells that need to be

altered by the attacker to achieve a high confidence level. According

to our partition strategy, when a green cell is perturbed out of the

range of the unit green domain, there is a 0.5 chance that it will be

flipped to a red cell. According to the threat model, the attackers

cannot discern the key cells. Therefore, to flip green key cells into

red, attackers can only randomly select 𝑛ℎ cells and introduce noise.

We simulate alteration attacks using three representative methods

of adding noise, including uniform distribution noise, Gaussian

distribution noise, and Laplace distribution noise, all with a mean

of 0 and a standard deviation of 𝜎 .

TabularMark: Watermarking Tabular Datasets for Machine Learning CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Proposition 3.4. Denote by 𝑛ℎ the amount of cells an attacker
tamper with. When each cell is added with an i.i.d noise from uniform
distribution 𝜖 ∼ 𝑈 [−6𝜎, 6𝜎]. The expectation of 𝑛ℎ for the watermark
removing is

E[𝑛ℎ] =
𝑛(𝑛𝑤 − 𝑛𝛼)

𝑛𝑤𝑝𝜎
,

where 𝑛𝛼 = 𝛼

√︃
𝑛𝑤

4
+ 𝑛𝑤

2
is the least amount of green cells to make

the z-score achieve 𝛼 and 𝑝𝜎 = 0.5 − 𝑝

12𝑘𝜎
. For example, when 𝑛 =

10000, 𝑛𝑤 = 400 and𝑛𝛼 = 250, we have E[𝑛ℎ] > 7500 since 𝑝𝜎 < 0.5.
Moreover, to achieve a 95% confidence interval, we have

𝑛ℎ > 𝑛𝑤+(
(𝑛 − 𝑛𝑤)!
0.05𝑛!

𝑛𝑤−𝑛𝛼∑︁
𝑛𝑥=0

𝑛𝑤∑︁
𝑛𝑦=𝑛𝑥

(
𝑛𝑦

𝑛𝑥

) (
𝑛𝑤

𝑛𝑦

)
𝑝
𝑛𝑥
𝜎 (1−𝑝𝜎)𝑛𝑦−𝑛𝑥)

−1
𝑛𝑤 .

Proof. We state the case where 𝛾 = 0.5 and 3𝜎 ≥ 𝑝/𝑘 . Consider
a green cell 𝑥 ∼ 𝑈 [0, 2𝑝/𝑘], the probability 𝑥 + 𝜖 is not in the

same interval as 𝑥 is 𝑃𝑟 (𝑥 + 𝜖 > 2𝑝/𝑘) + 𝑃𝑟 (𝑥 + 𝜖 < 0), which
is the 𝑃𝑟 (𝜖 > 2𝑝/𝑘 − 𝑥) + 𝑃𝑟 (𝜖 < −𝑥) = 1 − 𝑝

6𝑘𝜎
. Therefore, the

probability that 𝑥 + 𝜖 is red is 𝑝𝜎 = 0.5 − 𝑝

12𝑘𝜎
.

To achieve the watermark removal, we need to add noise on at

least 𝑛𝑤 − 𝑛𝛼 cells with the watermark. Therefore, the expectation

of 𝑛ℎ is
𝑛 (𝑛𝑤−𝑛𝛼)

𝑛𝑤
(0.5 − 𝑝

12𝑘𝜎
)−1.

Consider the case of a 95% confidence interval. Denote by 𝑁𝑥

the amount of key cells changing from green to red. Then, 𝑃𝑟 (𝑁𝑥 =

𝑛𝑥) =
∑𝑛𝑤
𝑛𝑦=𝑛𝑥

(𝑛𝑦𝑛𝑥) (
𝑛𝑤
𝑛𝑦
) (𝑛−𝑛𝑤𝑛ℎ−𝑛𝑦

)
(𝑛𝑛ℎ)

𝑝
𝑛𝑥
𝜎 (1−𝑝𝜎)𝑛𝑦−𝑛𝑥 >

(𝑛−𝑛𝑤𝑛ℎ−𝑛𝑤
)

(𝑛𝑛ℎ)
∑𝑛𝑤
𝑛𝑦=𝑛𝑥(𝑛𝑦

𝑛𝑥

) (𝑛𝑤

𝑛𝑦

)
𝑝
𝑛𝑥
𝜎 (1 − 𝑝𝜎)𝑛𝑦−𝑛𝑥

when we consider 𝑛ℎ is not very large,

whichmeans

∑𝑛𝑤−𝑛𝛼
𝑛𝑥=0

𝑃𝑟 (𝑁𝑥 = 𝑛𝑥) > (𝑛ℎ−𝑛𝑤)𝑛𝑤 (𝑛−𝑛𝑤)!
𝑛!

∑𝑛𝑤−𝑛𝛼
𝑛𝑥=0∑𝑛𝑤

𝑛𝑦=𝑛𝑥

(𝑛𝑦

𝑛𝑥

) (𝑛𝑤

𝑛𝑦

)
𝑝
𝑛𝑥
𝜎 (1−𝑝𝜎)𝑛𝑦−𝑛𝑥

. Then, we can derive the afore-

mentioned inequality. □

Proposition 3.5. Denote by 𝑛ℎ the amount of cells an attacker
tamper with. When each cell is added an i.i.d noise from Gaussian
distribution 𝜖 ∼ N(0, 𝜎2). The expectation of 𝑛ℎ for the watermark
removing is

E[𝑛ℎ] ≥
𝑛(𝑛𝑤 − 𝑛𝛼)

𝑛𝑤𝑝𝜎
,

where 𝑛𝛼 = 𝛼

√︃
𝑛𝑤

4
+ 𝑛𝑤

2
is the least amount of green cells to make

the z-score achieve 𝛼 , 𝑝𝜎 = 1

4
+ 1

2

∫ ∞
2𝑝

𝑘𝜎

𝜓 (𝑥)𝑑𝑥 , and 𝜓 (·) denotes
probability density function (PDF) of the standard normal distribution.
Moreover, to achieve a 95% confidence interval, we have

𝑛ℎ > 𝑛𝑤+(
(𝑛 − 𝑛𝑤)!
0.05𝑛!

𝑛𝑤−𝑛𝛼∑︁
𝑛𝑥=0

𝑛𝑤∑︁
𝑛𝑦=𝑛𝑥

(
𝑛𝑦

𝑛𝑥

) (
𝑛𝑤

𝑛𝑦

)
𝑝
𝑛𝑥
𝜎 (1−𝑝𝜎)𝑛𝑦−𝑛𝑥)

−1
𝑛𝑤 .

Proof. Similarly, we only need to compute the maximum prob-

ability that a green cell is changed to red and substitute it into 𝑝𝜎
of Proposition 3.4, with 𝑃𝑟 (𝜖 > 2𝑝/𝑘 − 𝑥) + 𝑃𝑟 (𝜖 < −𝑥) ≤ 𝑃𝑟 (𝜖 >

2𝑝/𝑘) + 𝑃𝑟 (𝜖 < 0) = 1

2
+
∫ ∞
2𝑝

𝑘𝜎

𝜓 (𝑥)𝑑𝑥 . □

Proposition 3.6. Denote by 𝑛ℎ the amount of cells an attacker
tamper with. When each cell is added an i.i.d noise from Laplace dis-
tribution 𝜖 ∼ Lap(0, 𝜎/

√
2). The expectation of 𝑛ℎ for the watermark

removing is

E[𝑛ℎ] ≥
𝑛(𝑛𝑤 − 𝑛𝛼)

𝑛𝑤𝑝𝜎
,

where 𝑛𝛼 = 𝛼

√︃
𝑛𝑤

4
+ 𝑛𝑤

2
is the least amount of green cells to make

the z-score achieve 𝛼 and 𝑝𝜎 = 1

4
(1 + exp{−

√
2𝑝/𝑘𝜎}). Moreover, to

achieve a 95% confidence interval, we have

𝑛ℎ > 𝑛𝑤+(
(𝑛 − 𝑛𝑤)!
0.05𝑛!

𝑛𝑤−𝑛𝛼∑︁
𝑛𝑥=0

𝑛𝑤∑︁
𝑛𝑦=𝑛𝑥

(
𝑛𝑦

𝑛𝑥

) (
𝑛𝑤

𝑛𝑦

)
𝑝
𝑛𝑥
𝜎 (1−𝑝𝜎)𝑛𝑦−𝑛𝑥)

−1
𝑛𝑤 .

Proof. Similarly, we only need to compute the maximum prob-

ability that a green cell is changed to red, with 𝑃𝑟 (𝜖 > 2𝑝/𝑘 − 𝑥) +
𝑃𝑟 (𝜖 < −𝑥) ≤ 𝑃𝑟 (𝜖 > 2𝑝/𝑘) + 𝑃𝑟 (𝜖 < 0) = 1

2
+
∫ ∞√

2𝑝

𝑘𝜎

1

2
𝑒−𝑥𝑑𝑥 =

1

2
(1 + exp{−

√
2𝑝/𝑘𝜎}). □

Analysis and Conclusions. 𝑛ℎ required to erase the watermark

with a 95% confidence is obviously greater than the expected 𝑛ℎ
when erasing the watermark, so we analyze the robustness of the

watermark from 𝐸 [𝑛ℎ]. The upper bound of 𝑝𝜎 is strictly less than

0.5, since there is still a fifty percent chance that the changed in-

terval remains green. Moreover, the upper bound of 𝑝𝜎 is greater

in the case of Gaussian noise or Laplace noise when the variance

of the noise is small, which reflects the potential of the latter two

strategies to reduce 𝐸 [𝑛ℎ] in such cases.

For 𝐸 [𝑛ℎ], even if we assume that every perturbation can flip

green cells, we have 𝐸 [𝑛ℎ] ≥
𝑛 (𝑛𝑤−𝑛𝛼)

𝑛𝑤𝑝𝜎
=

𝑛 (𝑛𝑤−𝑛𝛼)
𝑛𝑤

= 𝑛

(
1 − 𝑛𝛼

𝑛𝑤

)
when added noises are from uniform distribution, Gaussian distribu-

tion noise, or Laplace distribution. Considering that 𝑛𝛼 approaches

half of 𝑛𝑤 , 𝐸 [𝑛ℎ] is also close to half of 𝑛, much greater than 𝑛𝑤 ,

indicating that attackers need to pay a much higher cost than the

data owner to erase the watermark.

4 EXPERIMENTS AND ANALYSIS
In this section, we organize experiments by answering five research

questions (RQs). Following the three desiderata mentioned in Sec-

tion 1, we design four related RQs to demonstrate the superiority

of TabularMark. To further explore the usage of TabularMark, we
complement one additional RQ on hyper-parameter selection. The

code is available at https://github.com/yihzheng258/TabularMark.

RQ1) Is the TabularMark detectable for various tabular datasets?

(Section 4.1)

RQ2) Can TabularMark achieve non-intrusiveness across various

tabular datasets used for ML? (Section 4.2)

RQ3) Can TabularMark be robust against common malicious at-

tacks? (Section 4.3)

RQ4) How does TabularMark perform compared to the related

state-of-the-art schemes? (Section 4.4)

RQ5) What are the trade-offs among the hyper-parameters of

TabularMark? (Section 4.5)

Experimental Setup. Experiments are conducted on a server com-

prising two Intel(R) Xeon(R) Platinum 8383C CPU@2.70GHz, run-

ning Ubuntu 18.04 LTS 64-bit with 256GB memory. We use NumPy

to randomly generate two-dimensional normal distribution data as

synthetic datasets, with a mean of 𝜇 = 0, a variance of 𝜎 = 20, and a

https://github.com/yihzheng258/TabularMark

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Yihao Zheng et al.

total of 2000 tuples to run. Forest Cover Type [8], HOG feature based

on the digits dataset [4], and Boston Housing Prices [22] are em-

ployed as real-world datasets. Notably, the HOG feature dataset is

generated with the histogram of oriented gradients (HOG) features

extracted from the digits dataset, combined with their categories.

For ML models, XGBoost [13], Random Forest [10], and Linear Re-

gression [33] are used to cover both classification and regression

tasks. Besides, the z-score threshold defaults to 1.96 to maintain

the theoretical constraint of a 5% false positive rate. To keep the

content coherent and focused, some less commonly used dataset

settings will be explained when introducing specific tasks.

Reproducibility. For reproducibility, we set a specific random seed

to ensure that the data distortion and model training effects are re-

peatable on the same hardware and software stack. To eliminate the

randomness of the results, the experimental outcomes are generally

averaged over multiple runs.

4.1 Detectability
In this section, we investigate the z-scores on the original, water-

marked, perturbed datasets to answer RQ1. One synthetic and

three real-world datasets are utilized to verify the detectability of

TabularMark.
In the experiment, synthetic datasets are watermarked with

𝑛𝑤 = 300, 𝑝 = 2𝜎 , and 𝑘 = 500 on the first dimension. Forest

Cover Type dataset is watermarked with 𝑛𝑤 = 400 on the attribute

Cover_Type. HOG feature dataset is watermarked with 𝑛𝑤 = 150

on the attribute category. Boston Housing Prices dataset is water-

marked with 𝑝 = 25, 𝑘 = 500, and 𝑛𝑤 = 50 on the attribute MEDV.
Subsequently, watermark detection is performed on the original

dataset 𝐷𝑜 , the watermarked dataset 𝐷𝑤 , and the dataset 𝐷𝑝 gen-

erated after randomly perturbing 𝐷𝑜 . Results of detected z-scores

are shown in Table 2.

Table 2: Z-scores

Dataset 𝐷𝑜 𝐷𝑤 𝐷𝑝

Synthetic -0.0531 17.3 -0.0393

Forest -0.0159 18.6 -0.0467

HOG -0.327 12.3 0.128

Boston Housing -0.113 6.91 -0.142

In practice, there are many potential suspicious datasets that may

cause false positive problems. To evaluate the false positive problem

of TabularMark, we construct neighboring suspicious datasets for

synthetic datasets and the real Boston Housing Price dataset and

then conduct watermark detection. Specifically, for the synthetic

datasets, 100 independently generated datasets, 100 perturbed orig-

inal datasets, and 200 perturbed watermarked datasets are used to

construct a set of 400 neighboring datasets. For the Boston Housing

Price dataset, we randomly divide the original dataset into two

equal parts, A and B. We use 100 perturbed Bs, 100 perturbed As,

and 200 perturbed watermarked As to construct a set of 400 neigh-

boring datasets. The detection results of TabularMark are expressed
using ROC curves in Figure 6.

The ROC curves and the AUC results (both greater than 0.9) show

that TabularMark is highly effective in detecting the watermark

with a low false positive rate.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

it
iv

e
Ra

te

ROC curve (area = 0.93)

(a) Synthetic

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

it
iv

e
Ra

te

ROC curve (area = 0.94)

(b) Boston Housing
Figure 6: ROC curves

4.2 Non-Intrusiveness
In this section, we investigate ML-related metrics on the origi-

nal and watermarked datasets to answer RQ2. Three real-world
datasets, including the Forest Cover Type dataset, the HOG feature

dataset, and the Boston Housing Prices dataset, are utilized to verify

the non-intrusiveness of TabularMark
We train XGBoost classificationmodels separately on𝐷𝑜 and𝐷𝑤 .

Then we evaluate their classification performance. The 𝐹1-scores

for categories 2, 4, and 6 are presented in Table 3. It can be observed

that the ML utility of 𝐷𝑤 , compared to 𝐷𝑜 , does not significantly

decrease, which implies that TabularMark hardly impairs the ML

utility of the watermarked dataset. This indicates that TabularMark
is non-intrusive.

Table 3: 𝑭1-scores

Dataset Category 2 Category 4 Category 6

𝐷𝑜 0.888 0.940 0.848

𝐷𝑤 0.887 0.937 0.845

More Datasets. We continue to verify the non-intrusiveness of

TabularMark on theHOG feature dataset and BostonHousing Prices

dataset. Random Forest and linear regression models are employed

to assess their ML utility. Experimental results are demonstrated in

Table 4.

Table 4: ML utility on more datasets
(a) Accuracy on HOG

Dataset 𝐷𝑜 𝐷𝑤

Accuracy 0.942 0.940

(b) MSEs on Boston Housing

Dataset 𝐷𝑜 𝐷𝑤

MSE 24.8 25.6

Additionally, we test the non-intrusiveness of TabularMark on

a small dataset Zoo [19] (with 100 tuples), which is watermarked

with 𝑛𝑤 = 15 on attribute type. Random Forest is used to measure

the ML utility of datasets. Experimental results are demonstrated

in Table 5.

Table 5: Z-scores and accuracy on Zoo

Dataset 𝐷𝑜 𝐷𝑤

Z-score 0.366 3.87

Accuracy 0.900 0.870

TabularMark: Watermarking Tabular Datasets for Machine Learning CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

The experimental results show that the ML-related metrics, in-

cluding MSE and accuracy, are slightly reduced after watermarking,

demonstrating the non-intrusiveness of TabularMark. For small

datasets, TabularMark is still non-intrusive. However, since the

watermark strength is proportional to the absolute number of key

cells, the distortion of the watermark dataset is more significant

as the proportion of tuples perturbed is relatively larger in small

datasets.

4.3 Robustness
In this section, we investigate the z-scores and ML-related metrics

on the attacked datasets to answer RQ3. Following the proposed
schemes [2, 23, 31], wemainly verify the robustness of TabularMark
on the real-world dataset Forest Cover Type.

AlterationAttack.An alteration attack on a dataset refers to a type
of attack where an attacker intentionally modifies the attributes

of the dataset in a random or seemingly random manner. The ran-

domness of the changes may make it difficult to detect watermarks.

In this experiment, we assume that the attacker is aware of the

attribute to which the watermark has been embedded (in actual

scenarios, the attribute used for watermarking is generally kept

secret). We simulate the attacker randomly perturbing 20%, 40%,

60%, 80% and 100% of the attribute Cover Type and examine the

z-scores under various alteration attacks along with the ML utility

impact on the XGBoost model. Table 6 and Table 7 respectively

show the results of the z-scores and the classification performance

for the dataset under alteration attacks.

Table 6: Z-scores on Forest Cover Type Dataset

Alteration Attack (%) 20 40 60 80 100

Z-score 13.8 8.67 3.68 -1.11 -6.05

Table 7: 𝑭1-scores on Forest Cover Type Dataset

Alteration Attack (%) Category 2 Category 4 Category 6

20 0.879 0.853 0.813

40 0.867 0.791 0.761

60 0.847 0.661 0.645

80 0.679 0.0631 0.115

100 0.00203 0.00180 0.000773

We can observe that, given 𝛼 = 1.96, when the proportion of the

alteration attack reaches 80%, the watermark detection algorithm

can no longer detect the watermark in the attacked dataset. How-

ever, at this point, the 𝐹1-scores for these three categories decrease

significantly, indicating that the ML utility of the attacked dataset

for the model has been greatly reduced. Although the attacker

successfully erases the watermark, the trained model becomes inop-

erable, which implies that TabularMark is robust under alteration

attacks.

Insertion Attack. An insertion attack on a dataset refers to a type

of attack where tuples are created randomly and inserted into the

dataset to destroy the watermark. In this experiment, we simulate

the attacker randomly inserting 20%, 40%, 60%, 80%, 100% tuples into

the watermarked dataset and examine the z-scores under various

insertion attacks. Due to the insertion attack disrupting the order

of tuples in the dataset, we employ the first two attributes and

the first three attributes of the Forest Cover Type as primary keys

respectively to match tuples. Table 8 and Table 9 display the z-score

detection results for these two matching methods, respectively.

Table 8: Z-scores (two-attribute matching)

Insertion Attack (%) 20 40 60 80 100

Z-score 8.23 7.43 6.87 6.24 5.73

Table 9: Z-scores (three-attribute matching)

Insertion Attack (%) 20 40 60 80 100

Z-score 18.3 18.1 18.1 17.9 17.8

The results from the two tables indicate that, under the assump-

tion of a threshold 𝛼 = 1.96, watermarks can still be effectively

detected even when up to 100% of tuples are inserted relative to

the size of the original dataset, which signifies that TabularMark is

robust under insertion attacks.

Deletion Attack. A deletion attack on a dataset refers to a type of

attack where tuples are deleted randomly to destroy the watermark.

In this experiment, we simulate the attacker randomly deleting

20%, 40%, 60%, 80%, 100% tuples from the watermarked dataset and

examine the z-scores under various deletion attacks. Due to the

same reason with the insertion attack, we also employ. the first two

attributes and the first three attributes of the Forest Cover Type

as primary keys respectively to match tuples. Tables 10 and 11 dis-

play the z-score detection results for these two matching methods,

respectively.

Table 10: Z-scores (two-attribute matching)

Deletion Attack (%) 20 40 60 80 100

Z-score 8.42 7.45 6.13 4.59 \

Table 11: Z-scores (three-attribute matching)

Deletion Attack (%) 20 40 60 80 100

Z-score 16.7 14.4 11.6 8.21 \

The results from the two aforementioned tables indicate that,

under the assumption of a threshold 𝛼 = 1.96, the watermark can

still be effectively detected even in the event of a substantial deletion

attack, which suggests that TabularMark is robust under deletion

attacks.

Data Cleaning Attacks. Considering that relational data often

contains functional dependencies and integrity constraints, attack-

ers may use some data cleaning algorithms such as HoloClean [41]

to reverse perturbed key cells back. However, considering attackers

have less background knowledge than the data owner, the corre-

lation among attributes that can be exploited is relatively limited.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Yihao Zheng et al.

Besides, it is unlikely that there are explicit functional dependencies

involving the target attribute. Otherwise, there would be no need to

predict the target attribute through a trained ML model. Therefore,

if the data owner chooses to perturb the target attribute, it will

unlikely be affected by the data cleaning algorithms. We utilize the

example datasets (Adult and Hospital) in the HoloClean repo
1
for

experiments. Adult is watermarked with 𝑛𝑤 = 300 on the attribute

Income. Hospital is watermarked with 𝑛𝑤 = 300 on the attribute

Condition. Constraints among these datasets are defined by [41].

Table 12 shows the results of the z-scores for the watermarked

dataset 𝐷𝑤 and the attacked dataset 𝐷𝑎 generated by adopting the

HoloClean for data cleaning attacks.

Table 12: Z-scores of Adult and Hospital under data cleaning

Dataset 𝐷𝑤 𝐷𝑎

Adult 17.3 17.3

Hospital 17.3 10.7

The experimental results demonstrate the robustness of Tabu-
larMark against data cleaning attacks.

Data Anonymization and Synthesization Attacks. Attackers
may also consider stronger and utility-preserving data anonymiza-

tion and synthesization attacks, such as 𝑘-anonymization [7, 11],

synthetic data generation [9, 37, 52], and differential privacy based

anonymizations [1, 5, 51] to erase watermarks. We examine the

robustness of TabularMark against these attacks using dataset Iris

which is watermarked with 𝑛𝑤 = 20 on the attribute class. Iris
datasets are used to train a Random Forest classifier on features

of flowers to determine the class of flower from among 3 classes,

and the accuracy of the trained model is the metric to measure ML

utility.

For 𝑘-anonymization [7, 11], we employ the mean to represent

each group for anonymization and set 𝑘 = 3. We use different num-

bers of columns for anonymization ([‘petal_width’], [‘petal_length’,

‘petal_width’], and [‘sepal_width’, ‘petal_length’, ‘petal_width’])

and use the remaining columns to perform Algorithm 3 for water-

mark detection. Tables 13 and 14 show that although𝑘-anonymization

can impact the watermark, it also causes a significant decrease in

data utility.

Table 13: Accuracy of 𝐷𝑜 and 𝐷𝑤 on Iris

Dataset 𝐷𝑜 𝐷𝑤

Accuracy 1.00 0.933

Table 14: Results of 𝑘-anonymization on different #columns

#columns 1 2 3

Z-score 5.85 5.38 1.10

Accuracy 0.911 0.873 0.786

For synthetic data generation, many works [9, 37, 52] have been

proposed to generate synthetic tabular data following the distribu-

tion of original data. With this approach, attackers may completely

1
https://github.com/HoloClean/holoclean

erase the embedded watermark since there is no correspondence be-

tween the synthetic records and the original records. We adopt [9]

as an attack method and keep other settings the same as in the pre-

vious experiments. 𝐷𝑜 and 𝐷𝑤 are used to train generative models

and generate 𝐷′𝑜 and 𝐷′𝑤 , respectively. Table 15 shows that the data
distortion caused by watermarks significantly reduces the utility

of the downstream synthetic data 𝐷′𝑤 compared to the synthetic

data 𝐷′𝑜 . This suggests that while the watermark may be erased by

synthetic data, the significant utility drop still helps protect against

the use of the data.

Table 15: Accuracy of generation on Iris

Dataset 𝐷𝑜 𝐷′𝑜 𝐷𝑤 𝐷′𝑤

Accuracy 1.00 1.00 0.933 0.778

Attackers can also use differential privacy mechanisms [1, 5, 51]

to generate a perturbed statistical summary or synthetic data to

prevent the correspondence to 𝐷𝑜 . However, these mechanisms

require adding noise in the generative model to ensure differen-

tial privacy [47], which further reduces the data utility. Therefore,

attackers pay an even greater cost than synthetic data generation

attacks to erase the watermark.

In summary, the above experimental analysis and results show

that TabularMark can still safeguard the data against these stronger

attacks by significantly degrading the utility of the downstream

use of the attacked data.

More Datasets.We continue to validate the robustness of Tabu-
larMark on the HOG feature dataset and Boston Housing Prices

dataset. From Section 4.3, due to TabularMark being difficult to re-

move by other types of attacks, we only simulate alteration attacks.

Experimental results are demonstrated in Tables 16 and 17. Besides,

we also test the robustness of TabularMark on the small dataset

Zoo [19] under alteration attacks. Experimental results are shown

in Table 18.

Table 16: Z-scores and accuracy on HOG

Alteration Attack (%) 20 40 60 80 100

Z-score 9.71 7.13 4.78 2.55 -0.0816

Accuracy 0.933 0.910 0.825 0.530 0.100

Table 17: Z-scores and MSEs on Boston Housing

Alteration Attack (%) 20 40 60 80 100

Z-score 5.30 3.76 2.17 0.571 -1.10

MSE 26.1 27.6 34.0 35.4 42.3

Table 18: Z-scores and accuracy on Zoo

Alteration Attack (%) 20 40 60 80 100

Z-score 3.35 2.32 1.29 -0.774 -0.774

Accuracy 0.740 0.550 0.550 0.290 0.190

TabularMark: Watermarking Tabular Datasets for Machine Learning CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

1 2 3 4 5 6 7Category
0.0

0.2

0.4

0.6

0.8

F1
-s

co
re

Original
TabulaMark
HistMark
SemMark

(a) Accuracy

0 20 40 60
Alteration Proportion (%)

0

10

20

30

40

M
P

(%
)

TabularMark
HistMark
SemMark

(b) Mismatch percentage
Figure 7: Comparisons of TabularMark (ours), HistMark, and
SemMark on (a) non-intrusiveness and (b) robustness.

The results show that attackers would incur substantial costs to

make the watermark undetectable, the cost is so high that it renders

the trained model nearly unusable. This means that TabularMark
can effectively safeguard the ownership of these datasets regardless

of their size.

4.4 Comparison
In this section, we compare related watermarking schemes with

TabularMark to answer RQ4. The real-world dataset Forest Cover

Type is utilized to verify TabularMark outperforms related work.

Due to the inconsistency of the detectionmetrics of TabularMark
with related relational database watermarking works, direct com-

parison with related work is not feasible. Most other works employ

the bit error rate (BER) to measure the integrity of the extracted

watermark information. In contrast, we use the z-score of the one

proportion z-test as our detection metric. As we do not embed wa-

termark plaintext, we use the proportion of key cells flipped from

green domains to red domains as a metric similar to the BER. These

metrics are uniformly represented as Mismatch Percentage (MP).

Although this proportion does not directly indicate the strength of

the watermark, it is the closest method available for comparison

with metrics used in related work.

We consider two recent relational databasewatermarking schemes

for comparison with TabularMark: 1) HistMark: Hu et al. [23] utilize

histogram shifting to embed watermark information. 2) SemMark:

Li et al. [30] alter the random least significant position of the deci-

mal numerical attributes to embed watermark information. Both

methods are considered state-of-the-art reversible watermarking

schemes and are capable of effectively controlling distortion. We

will implement TabularMark, HistMark, and SemMark on the Forest

Cover Type dataset and compare them based on the three goals of

a watermarking scheme. We use a subset of the Forest Cover Type

dataset to avoid the adverse impact of having a much larger number

of instances in certain categories on watermarking schemes. For the

experiments, we randomly select 2000 tuples from each category.

The number of key cells for TabularMark and the length of the

watermark bit sequence is set to 400, ensuring that the quantity of

0s and 1s in the watermark bit sequence is equal. The watermark

is embedded in the attribute Cover_Type. The classification model

XGBoost is utilized to test the ML utility. Figure 7a and Figure 7b

exhibit the results of the comparative experiments.

Compared to the original dataset, the watermarked dataset of

TabularMark exhibits a negligible decline in the 𝐹1-scores across

various categories, with the lines almost overlapping. In contrast,

the line for SemMark presents a noticeable gap relative to Tabular-
Mark. This discrepancy is due to the requirement of SemMark to

ensure successful watermark embedding and the use of a majority

voting mechanism for robustness, which introduces a higher de-

gree of data distortion. The outcomes for HistMark are even less

satisfactory, which is due to histogram shifting that alters a large

amount of data in every group. Even changes as minimal as ±1 can
introduce excessive data distortion for categorical attributes.

When the attack proportion is set to 0, the MP for all three wa-

termarking schemes tends to be low, indicating that detectability

is generally assured. However, the mechanisms employed by Sem-

Mark and HistMark may result in some watermark bits not being

successfully embedded into the dataset. For HistMark, if the peak

bin of the histogram of each group matches the maximum or mini-

mum value of the corresponding attribute, it may not be possible

to shift it, leading to the failure of watermark embedding for that

group. In the case of SemMark, the location where a watermark bit

is embedded within a tuple is randomly selected, which may cause

some positions to be unselected. TabularMark, on the other hand,

does not rely on the embedding of specific watermark bits and is

not susceptible to this issue.

As shown in Figure 7b, when the alteration attack proportion

increases, aside from an initially slightly lower MP for TabularMark,
the plots of all three watermarking schemes converge beyond a 30%

proportion, suggesting that there is no significant disparity in the

MP metric among the schemes. Although TabularMark employs a

threshold-based z-score for watermark detection rather than MP,

this implies that the robustness of TabularMark is comparable to

that of state-of-the-art methods to a certain extent.

4.5 Design Trade-Offs
In this section, we conduct a qualitative analysis of the crucial

parameters of TabularMark and analyze their trade-offs to answer

RQ5. Synthetic datasets are utilized to explore trade-offs to exclude
external factors’ interference.

To generate labels for classification experiments, data across

two dimensions is combined with weights in the range of [−1, 1],
and the weighted sum is passed through a logistic function to

compute the probability of an event occurring. This probability is

then used to conduct a binomial distribution experiment to generate

a target array. The numerical attribute Dimension 1 is utilized to

investigate the trade-offs of the parameters. A logistic regression

model is trained to evaluate data utility. We assume that the attacker

employs an alteration attack, aiming to modify the dataset subtly in

an attempt to remove the watermark without making overt changes

that would degrade the ML utility of the dataset. We employ a

logistic regression model as the classifier for experiments.

4.5.1 The Perturbation Range [−𝑝, 𝑝]. The parameter 𝑝 is related

not only to the strength of the watermark but also to the ML utility

of the dataset. Here, we treat 𝑝 as a variable, with values set at

0.5𝜎 , 1𝜎 , 1.5𝜎 , 2𝜎 , and 2.5𝜎 . Other parameters are set as 𝑘 = 500

and 𝑛𝑤 = 300. We fix the alteration range at 2𝜎 , meaning that

they perturb the dataset within a range of [−2𝜎, 2𝜎]. The attack
proportions are set at 20%, 40%, 60%, 80%, and 100%.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Yihao Zheng et al.

In the following, we denote these proportions using the symbol 𝛽 .

Table 19 illustrates the impact of watermarking on the ML utility of

the dataset, measured by the classification accuracy of the trained

logistic regression model. Figure 8a and Figure 8b respectively

illustrate the variations in z-scores and classification accuracy of

the dataset under attacks as the parameter 𝑝 changes. Table 20

presents the specific values of z-scores and classification accuracy

for the attacked datasets.

Table 19: Accuracy

Dataset 0.5𝜎 1.0𝜎 1.5𝜎 2.0𝜎 2.5𝜎

𝐷𝑜 0.977 0.977 0.977 0.977 0.977

𝐷𝑤 0.976 0.973 0.965 0.956 0.952

20 40 60 80 100
Attack Proportions (%)

0.87
0.88
0.89
0.90
0.91
0.92
0.93
0.94
0.95

Cl
as

si
fic

at
io

n
Ac

cu
ra

cy

p: 0.5
p: 1.0
p: 1.5
p: 2.0
p: 2.5

(a) Accuracy

20 40 60 80 100
Attack Proportions (%)

10

5

0

5

10

Z-
sc

or
es

p: 0.5
p: 1.0
p: 1.5
p: 2.0
p: 2.5

(b) Z-scores
Figure 8: Accuracy and z-scores on 𝛽s

With the increase in 𝑝 , the ML utility of the watermarked dataset

degrades. In alteration attacks, it can be observed that as 𝛽 increases,

the z-score decreases rapidly. Meanwhile, the decrease in the utility

of attacked datasets is more pronounced. With the increase in 𝑝 ,

the ML utility of the attacked dataset degrades. This is because as

𝑝 increases, the perturbed data are more likely to fall within the

green domains, forcing attackers to increase the rate of alteration,

resulting in making the watermark unusable. The larger 𝛽 , the

poorer the performance of the trained model. It is important to

note that 𝑝 cannot be increased indefinitely, as key cells may be

identified as outliers.

4.5.2 The Number of Key Cells 𝑛𝑤 . The number of key cells, de-

noted by 𝑛𝑤 , is also a crucial parameter. Here, we treat 𝑛𝑤 as

a variable, with values set at 100, 200, 300, 400, and 500. Other

parameters are set as 𝑝 = 2.0𝜎 and 𝑘 = 500. We also fix the al-

teration range of perturbation at 2𝜎 . The attack proportions are

set at 20%, 40%, 60%, 80%, and 100%. Table 21 illustrates the impact

of watermarking on the ML utility of the dataset, measured by

the classification accuracy of the trained logistic regression model.

Figure 9a and Figure 9b respectively illustrate the variations in

z-scores and classification accuracy of the dataset under attack as

the parameter 𝑛𝑤 changes. Table 22 presents the specific values of

z-scores and classification accuracy for the attacked datasets.

It can be observed that as 𝑛𝑤 increases, the ML utility of the

watermarked dataset declines due to the increase of perturbed data,

and there is a slight decrease in the classification performance

of the trained model. Simultaneously, the cost of attack rises, as a

larger 𝑛𝑤 results in a higher z-score under the same attack intensity,

making the watermark less susceptible to being erased.

Table 20: Z-scores and accuracy on 𝑝s

𝑝
Z-score Accuracy

20 40 60 80 100 20 40 60 80 100

0.5𝜎 11.4 5.23 -0.903 -6.97 -13.0 0.953 0.929 0.908 0.898 0.883

1.0𝜎 12.2 7.01 1.84 -3.70 -8.68 0.950 0.927 0.906 0.895 0.881

1.5𝜎 12.8 8.23 3.41 -1.19 -5.68 0.945 0.922 0.904 0.892 0.879

2.0𝜎 13.1 9.06 4.91 0.457 -3.69 0.936 0.916 0.901 0.888 0.876

2.5𝜎 13.3 9.39 5.24 1.37 -2.43 0.928 0.908 0.896 0.882 0.872

Table 21: Accuracy

Dataset 100 200 300 400 500

𝐷𝑜 0.977 0.977 0.977 0.977 0.977

𝐷𝑤 0.972 0.963 0.957 0.953 0.949

20 40 60 80 100
Attack Proportions (%)

0.87
0.88
0.89
0.90
0.91
0.92
0.93
0.94
0.95

Cl
as

si
fic

at
io

n
Ac

cu
ra

cy

nw: 100
nw: 200
nw: 300
nw: 400
nw: 500

(a) Accuracy

20 40 60 80 100
Attack Proportions (%)

5

0

5

10

15

Z-
sc

or
es

nw: 100
nw: 200
nw: 300
nw: 400
nw: 500

(b) Z-scores
Figure 9: Accuracy and z-scores on 𝛽s

Table 22: Z-scores and accuracy on 𝑛𝑤s

𝑛𝑤
Z-score Accuracy

20 40 60 80 100 20 40 60 80 100

100 7.61 5.24 2.63 0.344 -2.36 0.949 0.926 0.906 0.895 0.880

200 10.7 7.27 3.76 0.0735 -3.01 0.942 0.921 0.903 0.891 0.878

300 12.9 9.06 4.88 0.351 -3.61 0.936 0.915 0.901 0.889 0.875

400 15.1 10.3 5.33 0.496 -4.49 0.931 0.912 0.897 0.886 0.873

500 16.9 11.3 6.06 0.785 -4.93 0.927 0.908 0.895 0.882 0.871

4.5.3 The Proportion of Green Domains 𝛾 . This represents a unique
trade-off, as in the watermark embedding and detection algorithms,

the ratio of the length of green domains to the total length of the

perturbation range, represented as 𝛾 , is set at 0.50. This decision is

based on the assumption that the deviation of cells in suspicious

datasets from those in the original dataset falls within a certain

range randomly. However, the impact of variations in 𝛾 on Tabu-
larMark is worth exploring. Here, we treat 𝑔𝑎𝑚𝑚𝑎 as a variable,

with values set at 0.25, 0.33, 0.5, 0.67, 0.75, 𝑛𝑤 = 300. We also fix

𝑝 = 1.5𝜎 and 𝑘 = 500. We fix the alteration range at 1.5𝜎 . Table 23

illustrates the impact of watermarking on the ML utility of the

dataset, measured by the classification accuracy of the trained lo-

gistic regression model. Figures 10a and 10b respectively illustrate

the variations in z-scores and classification accuracy of the dataset

under attack as the parameter 𝛾 changes. It can be observed that,

as 𝛾 increases, the ML utility of the watermarked dataset remains

nearly unchanged, indicating that variations in 𝛾 hardly alter the

degree of data distortion. When attackers increase the attack pro-

portion, the classification accuracy for different 𝛾 values tends to

converge, while smaller 𝛾 values result in larger z-scores. This is

TabularMark: Watermarking Tabular Datasets for Machine Learning CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

20 40 60 80 100
Alter Proportion (%)

0.89

0.90

0.91

0.92

0.93

Cl
as

si
fic

at
io

n
Ac

cu
ra

cy

: 0.25
: 0.33
: 0.50
: 0.67
: 0.75

(a) Accuracy

20 40 60 80 100
Alter Proportion (%)

5

0

5

10

15

20

25

Z-
sc

or
es

: 0.25
: 0.33
: 0.50
: 0.67
: 0.75

(b) Z-scores
Figure 10: Accuracy and z-scores on 𝛽s

dictated by the calculation formula of the z-score, indicating that

smaller 𝛾 values can enhance the robustness of TabularMark.

Table 23: Accuracy

Dataset 0.25 0.33 0.50 0.67 0.75

𝐷𝑜 0.958 0.958 0.958 0.958 0.958

𝐷𝑤 0.958 0.958 0.956 0.957 0.957

To further investigate the trade-off afforded by 𝛾 , we tested the

z-scores of different watermarking schemes on the original dataset.

The average results are presented in Table 24. It can be observed

that when 𝛾 is either very small or very large, the z-scores tend to

be larger. This suggests that when the threshold is low, there is a

potential risk of false positives, where an unwatermarked original

dataset might be misidentified as watermarked. This occurs because

if the green cells of the original dataset deviate slightly from the

expected values when𝛾 is small, it can result in a disproportionately

large z-score. Conversely, when 𝛾 is large, the key cells of the

original dataset naturally fall within the green domains with a

higher probability, leading to larger z-scores as well. Therefore,

selecting 𝛾 = 0.50 may represent a more balanced choice.

4.5.4 Conclusion. Increasing the size of 𝑝 and 𝑛𝑤 can enhance

the robustness of the watermark, but it may compromise non-

intrusiveness. We suggest that data owners adjust these two param-

eters based on their actual needs. Additionally, keeping 𝛾 at 0.50

helps to reduce the potential risk of false positives so we suggest

data owners use it.

Table 24: Z-scores

Dataset 0.25 0.33 0.50 0.67 0.75

𝐷𝑜 1.47 0.489 0.346 0.122 0.933

5 DISCUSSION
In this section, we discuss some optimization strategies to improve

TabularMark and extend its applicability.

5.1 Noise Selection
In this section, we propose a new perturbation noise selection

method to enhance the non-intrusiveness of TabularMark.
In Line 6 of Algorithm 1, we randomly select a number from the

green domains for perturbation. However, this uniform random

selection strategy may pick up a fair amount of substantial noise to

perturb the original dataset, which could potentially have a notice-

able impact on the ML utility of the data. To address this issue, we

improve the original strategy by adopting the normal distribution

probability. This means that numbers closer to the original value

have a higher probability of being selected, which is intuitively rea-

sonable as it implies that larger deviations are less likely to occur.

We characterize this transition with the corresponding PDF. In the

watermark embedding phase, we continuously sample from the

probability density function on [−𝑝, 𝑝] until the sample falls within

the green domains.

The PDF for uniform random selection is given by:

𝑓 (𝑥) =
{

1

2𝑝 , if − 𝑝 ≤ 𝑥 ≤ 𝑝,

0, otherwise.

The PDF for selection based on a normal distribution is given as:

𝑓 (𝑥) =

1

𝜎
√
2𝜋

exp

(
− (𝑥−𝜇)

2

2𝜎2

) /
(Φ(𝑝) − Φ(−𝑝)) , if − 𝑝 ≤ 𝑥 ≤ 𝑝,

0, otherwise.

We continue experiments on the Boston Housing Prices dataset.

Apart from the strategy for noise selection, all other experimental

settings remain the same as those described in Section 4.3. We in-

vestigate whether the ML utility of the new watermarked dataset,

with the improved strategy for noise selection, shows improvement

compared to the original watermark dataset. Additionally, we exam-

ine the robustness of the new watermark dataset against alteration

attacks, with the attack strategy being the same as before. Table 25

displays the results for the original dataset, the watermarked dataset

with uniform random perturbation, and the watermarked dataset

with random perturbation based on a normal distribution proba-

bility. Table 26 displays the results for the new watermark dataset

under alteration attacks.

Table 25: MSEs on 𝐷𝑜 and 𝐷𝑤s

Dataset 𝐷𝑜 Completely Random Normal Distribution

MSE 24.8 25.6 25.0

Table 26: Z-scores and MSEs

Alteration Attack (%) 20 40 60 80 100

Z-score 5.46 3.88 2.18 0.794 -0.690

MSE 25.9 27.1 34.9 33.8 41.8

The experimental results indicate that perturbing data based on

sampling from a normal distribution probability effectively reduces

the impact of watermarking on the ML utility of the dataset while

still maintaining robustness.

5.2 Key Cell Selection
For the watermark embedding algorithm (Algorithm 1), the key cell

selection strategy is random. It means that data points crucial to ML

model performance may be perturbed, thus significantly reducing

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Yihao Zheng et al.

ML utility. Data valuation methods like Shapley value [20] can

be utilized to select key cells with less contribution to ML utility.

During the watermark embedding process, we calculate the Shapley

value of each tuple in advance and select𝑛𝑤 tuples with the smallest

Shapley values as key cells. The ML utility of watermark datasets

under two different strategies is shown in Table 27.

Table 27: Results of MSEs

Dataset Completely Random Shapley Strategy

MSE 24.1 23.3

The results show that our new key cell selection strategy with

Shapley value can reduce data distortion during watermark embed-

ding and further improve the non-intrusiveness of TabularMark.

5.3 Matching
The matching algorithm (Algorithm 3) uses a row-by-row search

strategy to locate key cells, which is very inefficient, especially

when the dataset is large. We explore a more efficient algorithm

by adding a sorting step and a binary search step, which can the-

oretically reduce the time complexity from 𝑂 (𝑛2) to 𝑂 (𝑛 log𝑛).
We use the Boston Housing Prices dataset to verify the improve-

ment in time efficiency. Figure 11a shows the z-score results of the

two strategies under insertion attacks. Figure 11b shows the time

consumption of the two strategies.

0.2 0.4 0.6 0.8 1.0
Insertion Proportion (%)

5.8

6.0

6.2

Z-
sc

or
es

tuple-by-tuple search
binary search

(a) Z-scores

0.2 0.4 0.6 0.8 1.0
Insertion Proportion (%)

0

2

4

6

8

Ti
m

e
co

st
 (

s)

tuple-by-tuple search
binary search

(b) Time
Figure 11: Z-scores and time on 𝛽s

The results show that our new matching strategy can greatly

reduce time consumption without affecting the effect of watermark

detection.

5.4 Multi-Relational Database
Currently TabularMark considers that only one relation needs to

be watermarked. Multiple relations are also common, especially in

multi-relational databases. In the context of ML, multi-relational

databases consist of multiple tables, each potentially containing dif-

ferent attributes related to a central theme or dataset. Two possible

approaches can be utilized to watermark multi-relational databases.

First, when preparing such databases for ML tasks, it is a common

practice to merge these various tables into a single, comprehensive

table. This process involves joining the tables based on the foreign

keys so that the resultant table includes the target attribute (the

main variable of interest, such as a label in supervised learning) and

all other attributes that serve as features for model training. Once

this consolidated table is created, TabularMark can be effectively

utilized. Second, each individual relation (or table) within the multi-

relational database can be watermarked separately before joining.

This approach has a significant advantage: it supports detection

efforts even when only a subset of the relations is combined.

6 CONCLUSION
In this paper, we propose a simple yet effective watermarking

scheme for tabular datasets in ML, TabularMark, showing superior

detectability, non-intrusiveness, and robustness. TabularMark is

inspired by the randomness in the deviation between a suspicious

dataset and the corresponding original dataset. When embedding,

TabularMark artificially divides the data with deviations from the

original data into two divisions and selects from one division to

perturb certain cells in the original dataset. One proportion z-test is

adopted in detection to identify these intentional perturbations and

determine the ownership of the dataset. To detect the watermark

in datasets where some tuple sequences are inconsistent with the

original dataset, we propose a matching algorithm to locate tuples

containing key cells. Experimental results on real and synthetic

datasets validate the effectiveness of TabularMark and demonstrate

its applicability to various ML datasets and models.

The main limitation of TabularMark is that it uses a non-blind

approach to detect watermarks, which requires the knowledge of

the original dataset during the detection process. It is a valuable

improvement direction to study a blind version of TabularMark so

that it can be extended to watermarking a continuously updated

database without accessing the original dataset. Beyond the blind

property, several other related and practical directions are worthy

of future research as well. While TabularMark provides a general

minimal effect in the performance of various ML models trained on

tabular datasets, minimizing the performance effect for a specific

ML model remains a pivotal challenge. Meanwhile, considering

more possible attack methods, supporting more types of datasets,

and enlarging the scope of the threat model can be further studied.

ACKNOWLEDGMENT
The authors would like to thank the anonymous reviewers for their

helpful comments. This work was supported in part by the National

Key RD Program of China (2021YFB3101100, 2022YFB3103401),

NSFC (62102352, U23A20306), The Zhejiang Province Pioneer Plan

(2024C01074), JSPS KAKENHI (JP23K24851), JST PRESTO (JPMJPR23P5)

and JST CREST (JPMJCR21M2).

REFERENCES
[1] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov,

Kunal Talwar, and Li Zhang. 2016. Deep learning with differential privacy. In

Proceedings of the 2016 ACM SIGSAC conference on computer and communications
security. 308–318.

[2] Rakesh Agrawal and Jerry Kiernan. 2002. Watermarking relational databases. In

VLDB’02: Proceedings of the 28th International Conference on Very Large Databases.
Elsevier, 155–166.

[3] Sajjad Bagheri Baba Ahmadi, Gongxuan Zhang, Mahdi Rabbani, Lynda Boukela,

and Hamed Jelodar. 2021. An intelligent and blind dual color image watermarking

for authentication and copyright protection. Applied Intelligence 51 (2021), 1701–
1732.

[4] E. Alpaydin and Fevzi. Alimoglu. 1998. Pen-Based Recognition of

Handwritten Digits. UCI Machine Learning Repository. DOI:

https://doi.org/10.24432/C5MG6K.

[5] Sergul Aydore, William Brown, Michael Kearns, Krishnaram Kenthapadi, Luca

Melis, Aaron Roth, and Ankit A Siva. 2021. Differentially private query release

TabularMark: Watermarking Tabular Datasets for Machine Learning CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

through adaptive projection. In International Conference on Machine Learning.
PMLR, 457–467.

[6] K. Bache and M. Lichman. 2013. UCI Machine Learning Repository. http:

//archive.ics.uci.edu/ml

[7] Roberto J Bayardo and Rakesh Agrawal. 2005. Data privacy through optimal

k-anonymization. In 21st International conference on data engineering (ICDE’05).
IEEE, 217–228.

[8] Jock Blackard. 1998. Covertype. UCI Machine Learning Repository. DOI:

https://doi.org/10.24432/C50K5N.

[9] Vadim Borisov, Kathrin Seßler, Tobias Leemann, Martin Pawelczyk, and Gjergji

Kasneci. 2023. Language Models are Realistic Tabular Data Generators. In The
Eleventh International Conference on Learning Representations, ICLR 2023, Ki-
gali, Rwanda, May 1-5, 2023. OpenReview.net. https://openreview.net/pdf?id=

cEygmQNOeI

[10] Leo Breiman. 2001. Random forests. Machine learning 45 (2001), 5–32.

[11] Ji-Won Byun, Ashish Kamra, Elisa Bertino, and Ninghui Li. 2007. Efficient k-

anonymization using clustering techniques. In International conference on data-
base systems for advanced applications. Springer, 188–200.

[12] I-Fei Chen and Chi-Jie Lu. 2017. Sales forecasting by combining clustering and

machine-learning techniques for computer retailing. Neural Computing and
Applications 28 (2017), 2633–2647.

[13] Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A scalable tree boosting system.

In Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining. 785–794.

[14] Miranda Christ, Sam Gunn, and Or Zamir. 2024. Undetectable watermarks for

language models. In The Thirty Seventh Annual Conference on Learning Theory.
PMLR, 1125–1139.

[15] Paulo Cortez, A. Cerdeira, F. Almeida, T. Matos, and J. Reis. 2009. Wine Quality.

UCI Machine Learning Repository. DOI: https://doi.org/10.24432/C56S3T.

[16] Matthew F Dixon, Igor Halperin, and Paul Bilokon. 2020. Machine learning in
finance. Vol. 1170. Springer.

[17] Linkang Du, Zheng Zhu, Min Chen, Shouling Ji, Peng Cheng, Jiming Chen,

and Zhikun Zhang. 2024. WIP: Auditing Artist Style Pirate in Text-to-image

Generation Models. In Proceedings of the Network and Distributed System Security
Symposium, NDSS 2024. https://www.ndss-symposium.org/ndss-paper/auto-

draft-534/

[18] Joseph L Fleiss, Bruce Levin, and Myunghee Cho Paik. 2013. Statistical methods
for rates and proportions. john wiley & sons.

[19] Richard Forsyth. 1990. Zoo. UCI Machine Learning Repository. DOI:

https://doi.org/10.24432/C5R59V.

[20] Amirata Ghorbani and James Zou. 2019. Data shapley: Equitable valuation of

data for machine learning. In International conference on machine learning. PMLR,

2242–2251.

[21] Ali Hamadou, Xingming Sun, Saeed Shah, and Lingyun Gao. 2011. A weight-

based semi-fragile watermarking scheme for integrity verification of relational

data. International Journal of Digital Content Technology and its Applications 5, 8
(2011), 148–157.

[22] David Harrison and Daniel L Rubinfeld. 1978. Hedonic housing prices and the

demand for clean air. Journal of Environmental Economics and Management 5, 1
(1978), 81–102. https://doi.org/10.1016/0095-0696(78)90006-2

[23] Donghui Hu, Dan Zhao, and Shuli Zheng. 2018. A new robust approach for

reversible database watermarking with distortion control. IEEE Transactions on
Knowledge and Data Engineering 31, 6 (2018), 1024–1037.

[24] Jing-Zhi Huang and Zhan Shi. 2023. Machine-Learning-Based Return Predictors

and the Spanning Controversy in Macro-Finance. Manag. Sci. 69, 3 (2023), 1780–
1804. https://doi.org/10.1287/MNSC.2022.4386

[25] Min-Shiang Hwang, Ming-Ru Xie, and Chia-Chun Wu. 2020. A reversible hiding

technique using LSB matching for relational databases. Informatica 31, 3 (2020),
481–497.

[26] Fei Jiang, Yong Jiang, Hui Zhi, Yi Dong, Hao Li, Sufeng Ma, Yilong Wang, Qiang

Dong, Haipeng Shen, and Yongjun Wang. 2017. Artificial intelligence in health-

care: past, present and future. Stroke and vascular neurology 2, 4 (2017).

[27] Muhammad Kamran and Muddassar Farooq. 2018. A Comprehensive Survey

of Watermarking Relational Databases Research. CoRR abs/1801.08271 (2018).

arXiv:1801.08271 http://arxiv.org/abs/1801.08271

[28] Muhammad Kamran, Sabah Suhail, and Muddassar Farooq. 2013. A robust,

distortion minimizing technique for watermarking relational databases using

once-for-all usability constraints. IEEE Transactions on Knowledge and Data
Engineering 25, 12 (2013), 2694–2707.

[29] John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and

Tom Goldstein. 2023. A watermark for large language models. In International
Conference on Machine Learning. PMLR, 17061–17084.

[30] Wenling Li, Ning Li, Jianen Yan, Zhaoxin Zhang, Ping Yu, and Gang Long. 2022.

Secure and high-quality watermarking algorithms for relational database based

on semantic. IEEE Transactions on Knowledge and Data Engineering (2022).

[31] Yan Li, Junwei Wang, and Hongyong Jia. 2020. A robust and reversible water-

marking algorithm for a relational database based on continuous columns in

histogram. Mathematics 8, 11 (2020), 1994.
[32] Chia-Chen Lin, Thai-Son Nguyen, and Chin-Chen Chang. 2021. LRW-CRDB:

Lossless robust watermarking scheme for categorical relational databases. Sym-
metry 13, 11 (2021), 2191.

[33] Douglas C Montgomery, Elizabeth A Peck, and G Geoffrey Vining. 2021. Intro-
duction to linear regression analysis. John Wiley & Sons.

[34] Chejarla Venkat Narayana, Chinta Lakshmi Likhitha, Syed Bademiya, and Karre

Kusumanjali. 2021. Machine learning techniques to predict the price of used cars:

predictive analytics in retail business. In 2021 second international conference on
electronics and sustainable communication systems (ICESC). IEEE, 1680–1687.

[35] Warwick Nash, Tracy Sellers, Simon Talbot, Andrew Cawthorn, and Wes

Ford. 1995. Abalone. UCI Machine Learning Repository. DOI:

https://doi.org/10.24432/C55C7W.

[36] Ahmet Murat Ozbayoglu, Mehmet Ugur Gudelek, and Omer Berat Sezer. 2020.

Deep learning for financial applications: A survey. Applied Soft Computing 93

(2020), 106384.

[37] Neha Patki, Roy Wedge, and Kalyan Veeramachaneni. 2016. The synthetic data

vault. In 2016 IEEE international conference on data science and advanced analytics
(DSAA). IEEE, 399–410.

[38] Zeyu Qin, Liuyi Yao, Daoyuan Chen, Yaliang Li, Bolin Ding, and Minhao Cheng.

2023. Revisiting Personalized Federated Learning: Robustness Against Back-

door Attacks. In Proceedings of the 29th ACM SIGKDD Conference on Knowl-
edge Discovery and Data Mining, KDD 2023, Long Beach, CA, USA, August 6-
10, 2023, Ambuj K. Singh, Yizhou Sun, Leman Akoglu, Dimitrios Gunopulos,

Xifeng Yan, Ravi Kumar, Fatma Ozcan, and Jieping Ye (Eds.). ACM, 4743–4755.

https://doi.org/10.1145/3580305.3599898

[39] R. Quinlan. 1993. Auto MPG. UCI Machine Learning Repository. DOI:

https://doi.org/10.24432/C5859H.

[40] Khansa Rasheed, Adnan Qayyum, Mohamed Ghaly, Ala I. Al-Fuqaha, Adeel

Razi, and Junaid Qadir. 2022. Explainable, trustworthy, and ethical machine

learning for healthcare: A survey. Comput. Biol. Medicine 149 (2022), 106043.

https://doi.org/10.1016/J.COMPBIOMED.2022.106043

[41] Theodoros Rekatsinas, Xu Chu, Ihab F. Ilyas, and Christopher Ré. 2017. HoloClean:

Holistic Data Repairs with Probabilistic Inference. Proc. VLDB Endow. 10, 11 (2017),
1190–1201. https://doi.org/10.14778/3137628.3137631

[42] David Rhind. 1992. Data access, charging and copyright and their implications

for geographical information systems. International Journal of Geographical
Information Systems 6, 1 (1992), 13–30.

[43] Mohamed Shehab, Elisa Bertino, and Arif Ghafoor. 2007. Watermarking relational

databases using optimization-based techniques. IEEE transactions on Knowledge
and Data Engineering 20, 1 (2007), 116–129.

[44] Radu Sion, Mikhail J. Atallah, and Sunil Prabhakar. 2004. Rights Protection

for Relational Data. IEEE Trans. Knowl. Data Eng. 16, 12 (2004), 1509–1525.

https://doi.org/10.1109/TKDE.2004.94

[45] Devendra Swami, Alay Dilipbhai Shah, and Subhrajeet K. B. Ray. 2020. Predicting

Future Sales of Retail Products using Machine Learning. CoRR abs/2008.07779

(2020). arXiv:2008.07779 https://arxiv.org/abs/2008.07779

[46] Mingtian Tan, Tianhao Wang, and Somesh Jha. 2023. A Somewhat Robust Image

Watermark against Diffusion-based Editing Models. CoRR abs/2311.13713 (2023).

https://doi.org/10.48550/ARXIV.2311.13713 arXiv:2311.13713

[47] Toan V Tran and Li Xiong. 2024. Differentially Private Tabular Data Synthesis

using Large Language Models. arXiv preprint arXiv:2406.01457 (2024).

[48] Haiming Wang, Zhikun Zhang, Min Chen, and Shibo He. 2023. Making Wa-

termark Survive Model Extraction Attacks in Graph Neural Networks. In IEEE
International Conference on Communications, ICC 2023, Rome, Italy, May 28 - June
1, 2023. IEEE, 57–62. https://doi.org/10.1109/ICC45041.2023.10278974

[49] Jenna Wiens and Erica S Shenoy. 2018. Machine learning for healthcare: on the

verge of a major shift in healthcare epidemiology. Clinical Infectious Diseases 66,
1 (2018), 149–153.

[50] Xiangrong Xiao, Xingming Sun, and Minggang Chen. 2007. Second-LSB-

dependent robust watermarking for relational database. In Third international
symposium on information assurance and security. IEEE, 292–300.

[51] Liyang Xie, Kaixiang Lin, Shu Wang, Fei Wang, and Jiayu Zhou. 2018. Differ-

entially private generative adversarial network. arXiv preprint arXiv:1802.06739
(2018).

[52] Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni.

2019. Modeling tabular data using conditional gan. Advances in neural information
processing systems 32 (2019).

[53] Mohamed Yamni, Hicham Karmouni, Mhamed Sayyouri, and Hassan Qjidaa.

2022. Efficient watermarking algorithm for digital audio/speech signal. Digital
Signal Processing 120 (2022), 103251.

[54] Xiaorui Zhang, Xun Sun, Xingming Sun, Wei Sun, and Sunil Kumar Jha. 2022.

Robust Reversible Audio Watermarking Scheme for Telemedicine and Privacy

Protection. Computers, Materials & Continua 71, 2 (2022).
[55] Xin Zhong, Pei-Chi Huang, Spyridon Mastorakis, and Frank Y Shih. 2020. An au-

tomated and robust image watermarking scheme based on deep neural networks.

IEEE Transactions on Multimedia 23 (2020), 1951–1961.

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://openreview.net/pdf?id=cEygmQNOeI
https://openreview.net/pdf?id=cEygmQNOeI
https://www.ndss-symposium.org/ndss-paper/auto-draft-534/
https://www.ndss-symposium.org/ndss-paper/auto-draft-534/
https://doi.org/10.1016/0095-0696(78)90006-2
https://doi.org/10.1287/MNSC.2022.4386
https://arxiv.org/abs/1801.08271
http://arxiv.org/abs/1801.08271
https://doi.org/10.1145/3580305.3599898
https://doi.org/10.1016/J.COMPBIOMED.2022.106043
https://doi.org/10.14778/3137628.3137631
https://doi.org/10.1109/TKDE.2004.94
https://arxiv.org/abs/2008.07779
https://arxiv.org/abs/2008.07779
https://doi.org/10.48550/ARXIV.2311.13713
https://arxiv.org/abs/2311.13713
https://doi.org/10.1109/ICC45041.2023.10278974

	Abstract
	1 Introduction
	2 Related Work
	3 Algorithms
	3.1 Threat Model
	3.2 Watermark Embedding
	3.3 Watermark Detection
	3.4 Analysis on Watermark Removal

	4 Experiments and Analysis
	4.1 Detectability
	4.2 Non-Intrusiveness
	4.3 Robustness
	4.4 Comparison
	4.5 Design Trade-Offs

	5 Discussion
	5.1 Noise Selection
	5.2 Key Cell Selection
	5.3 Matching
	5.4 Multi-Relational Database

	6 Conclusion
	References

